Have <u>Fun with AI</u> Before We Begin!

Quick, Draw!

Say What You See

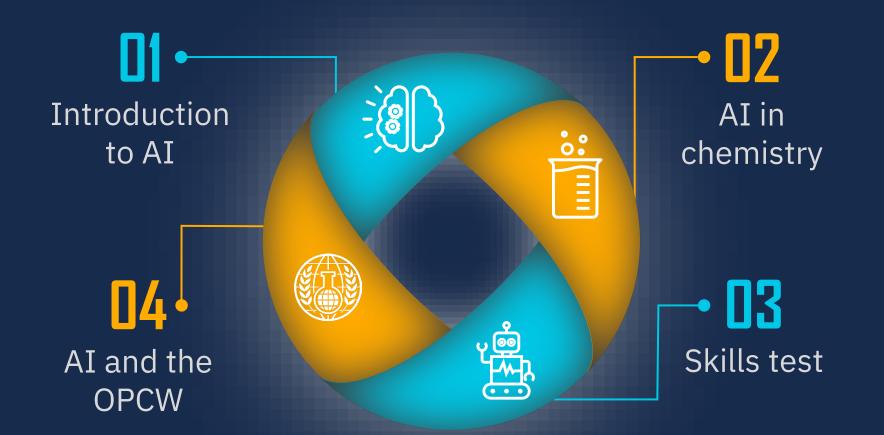
Blob Opera

Emoji Scavenger Hunt OPCW OFFICIAL

Atoms and Algorithms

Exploring Artificial Intelligence for Chemistry

Sarah Clapham Peter Hotchkiss Office of Strategy and Policy


Günter Povoden Scientific Advisory Board

OPCW Organisation for the Prohibition of Chemical Weapons

AGENDA

Introduction to AI

Artificial Intelligence (AI)

Machines or systems that mimic human intelligence

- Visual perception
- Speech recognition
- Problem solving
- Decision making

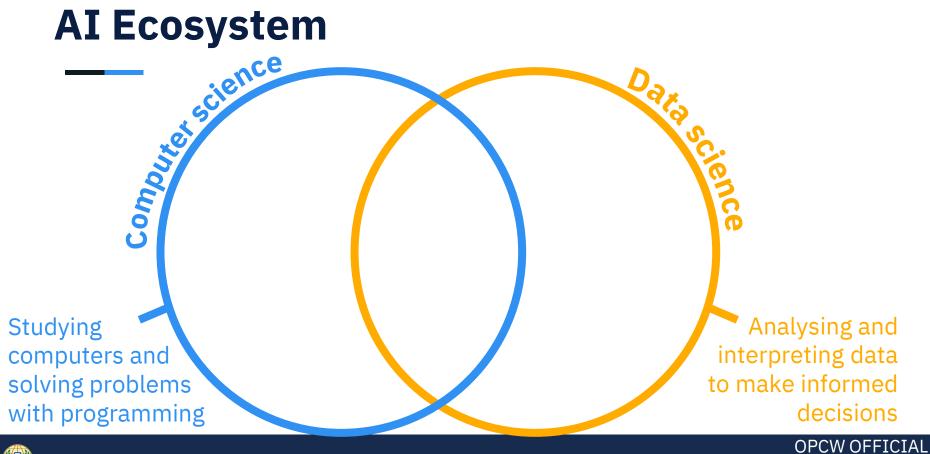
1956 – term first used

Categories of AI

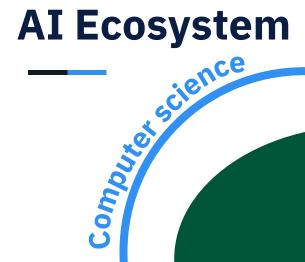
Categories of AI

Narrow (weak) AI

Categories of AI


General (strong) AI

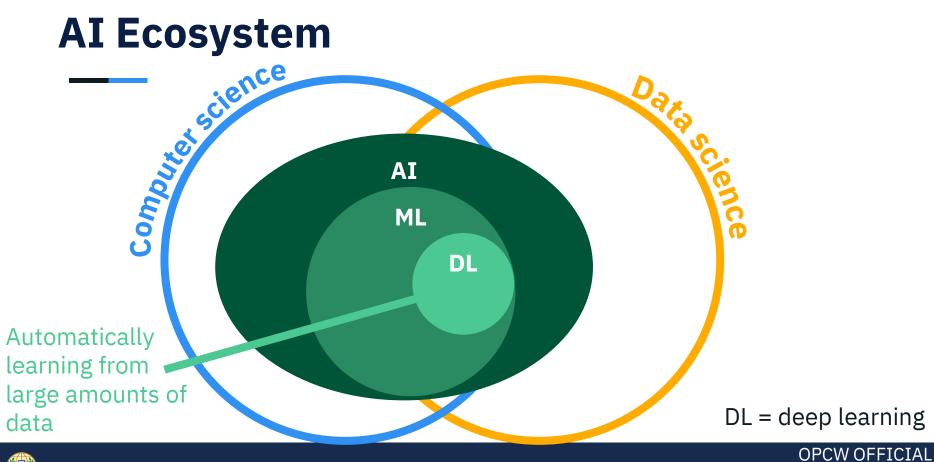
Super AI


Narrow (weak) AI

AI

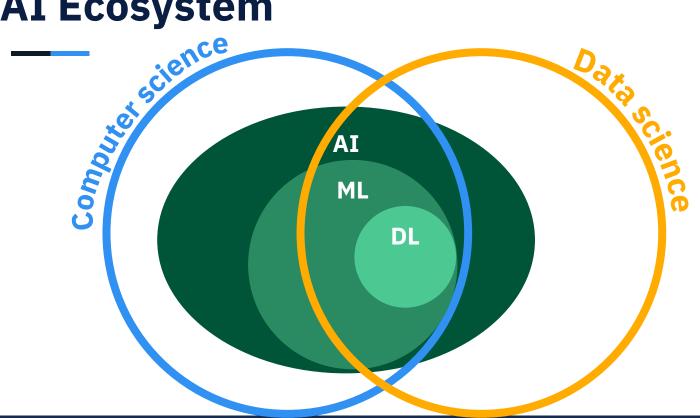
Systems performing tasks typically requiring human intelligence

AI Ecosystem Souter science


AI

ML

Independently learning from data to improve over time

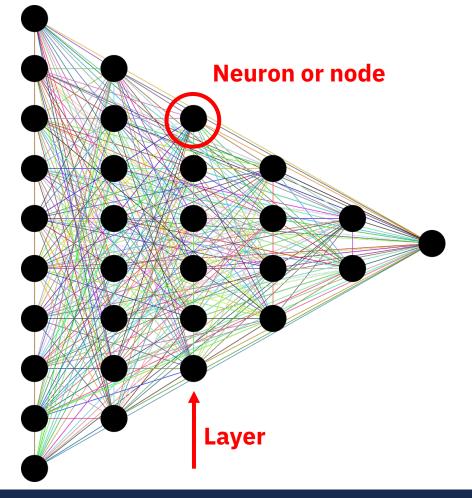

ML = machine learning

AI Ecosystem

Machine Learning

Learning patterns from data and **improving performance** without being explicitly programmed

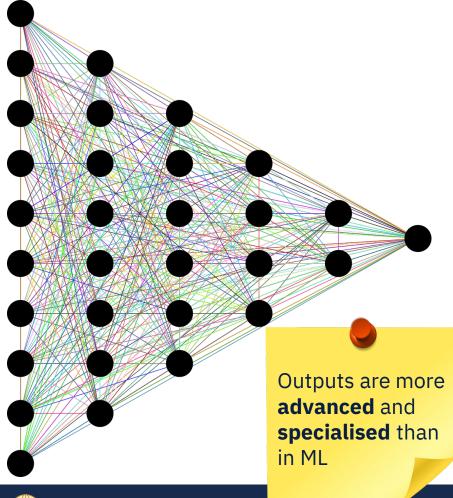
Inputs	(Semi-) Structured data
Processing	Algorithmic model
Outputs	Predictions, classifications, suggestions


```
# Create empty lists for each schedule
schedules = {"Schedule 1": [], "Schedule 2": [], "Schedule 3": []}
```

```
for chemical in chemicals:
    name = chemical["name"]
    toxicity = chemical["toxicity"] # e.g., "High", "Medium", "Low"
    legitimate_use = chemical["legitimate_use"] # e.g., "High", "Medium", "Low"
```

```
# Classify chemicals into schedules
if toxicity == "High" and legitimate_use == "Low":
    schedules["Schedule 1"].append(name)
elif toxicity in ["High", "Medium"] and legitimate_use in ["Medium", "Low"]:
    schedules["Schedule 2"].append(name)
else: # Default to Schedule 3
    schedules["Schedule 3"].append(name)
```

```
return schedules
```

Deep Learning

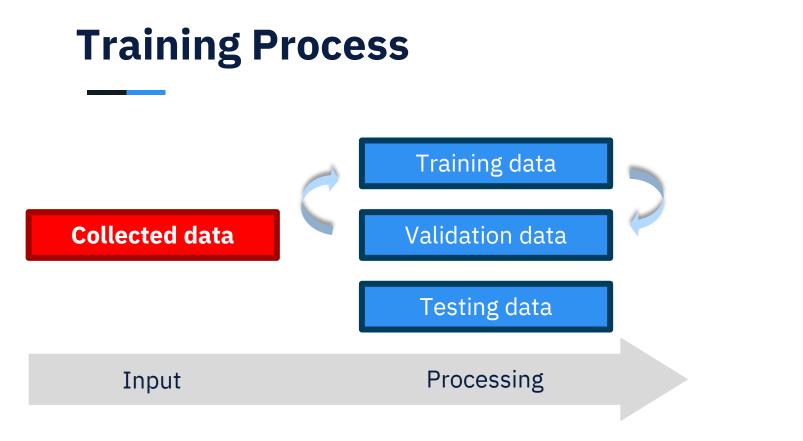
Automatically learning patterns from large amounts of data, especially for complex tasks, using multi-layered neural networks

Inputs	Unstructured data
Processing	Neural network model
Outputs	Predictions, classifications, generative output

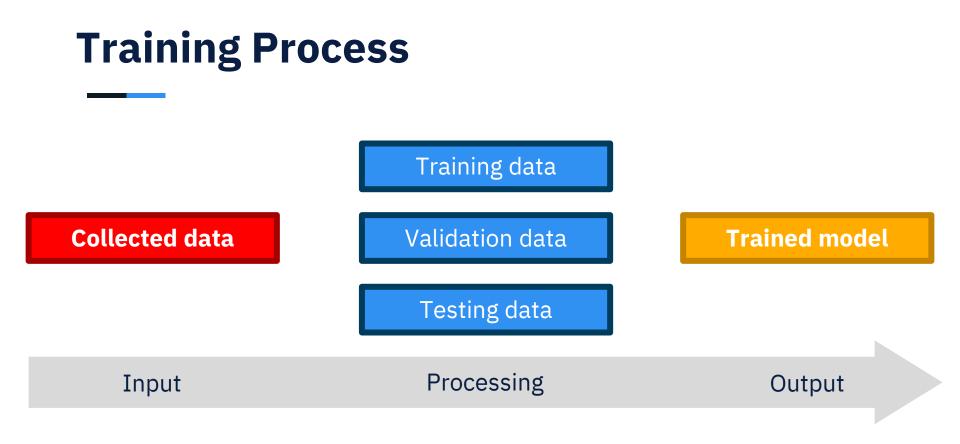
Deep Learning

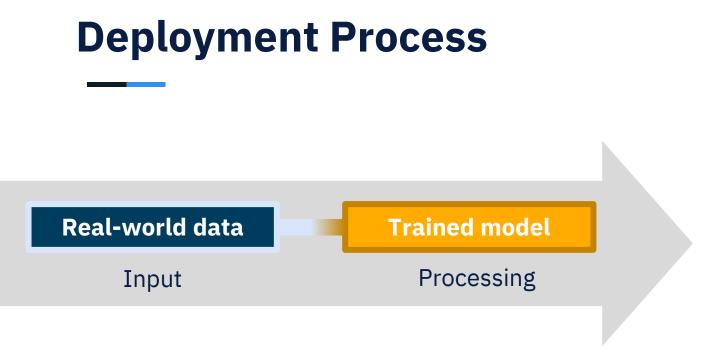
Automatically learning patterns from large amounts of data, especially for complex tasks, using multi-layered neural networks

Inputs	Unstructured data
Processing	Neural network model
Outputs	Predictions, classifications, generative output


Training Process

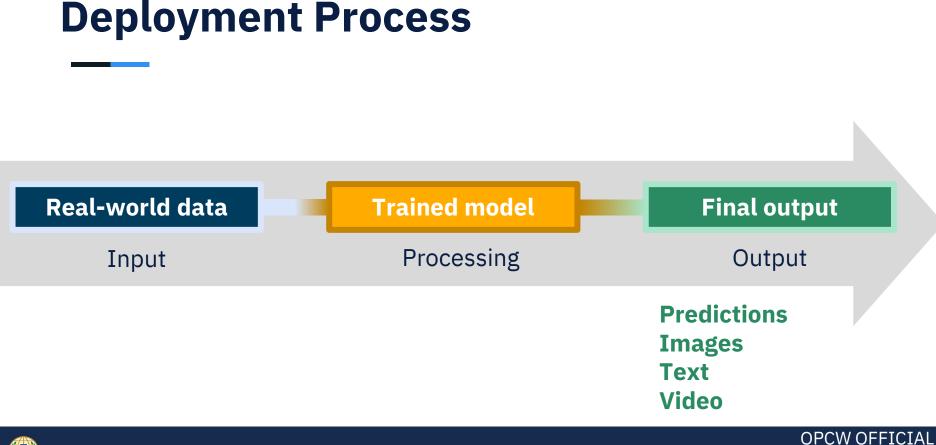
"Garbage in, garbage out"


Collected data

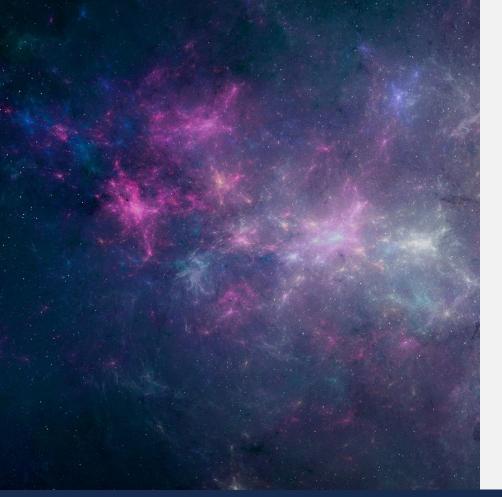

Deployment Process

Real-world data

Input



Applications of AI


Autocorrect **Email filtering** Virtual assistants Social media feeds Search engines Shopping recommendations Navigation apps Smart home devices

AI in Chemistry

17

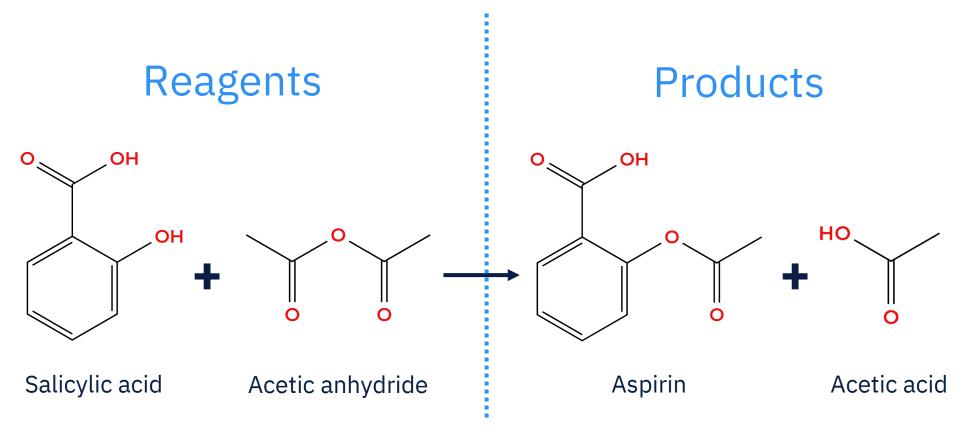
Chemical Discovery

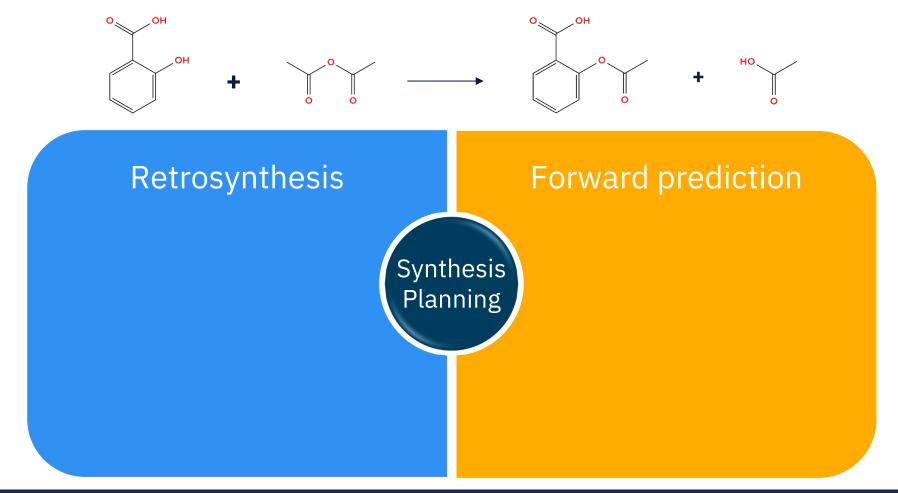
Addressing global challenges and improving quality of life

Chemical Discovery

Approximately

small organic molecules in chemical space




Synthesis Planning

Retrosynthesis

- Working **backwards from a target molecule** to identify possible reagents
- Deconstructs target into simpler components
- AI predicts feasible disconnections

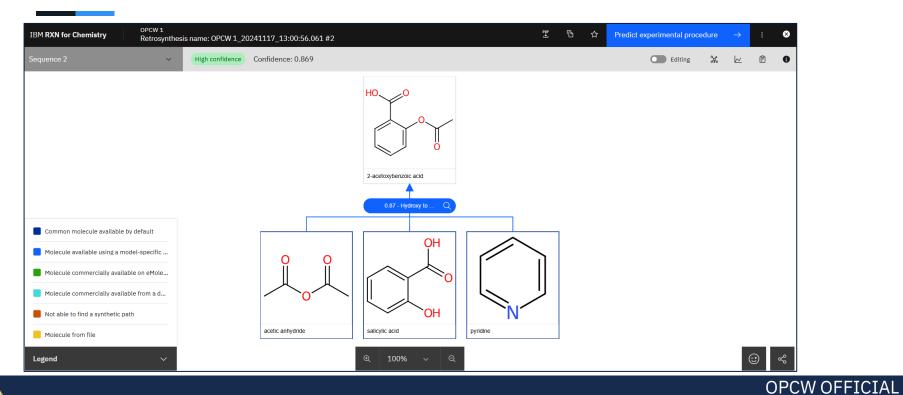
Forward prediction

Retrosynthesis

Synthesis Planning

Forward prediction

- Working **forwards from the reagents** to identify reaction outcomes
- Constructs target from available reagents
- AI predicts possible products and optimise reaction conditions



Synthesis Planning Tools

× IBM RXN for Chemistry			Add new project +
ப் Home			
🖹 Projects	Predict retrosynthesis	Predict product	
Collaborators	Predict possible retrosynthetic routes given a target molecule	Predict the product of a chemical reaction given the starting materials	
운 Predict retrosynthesis			
% Predict product	(?) → (?) →	$\bullet + \bullet \longrightarrow \bigcirc$	
Predict reagents	Aribus -		
음 Plan a synthesis			
	Predict reagents	Plan a synthesis	
Atom mapping	Predict the reagents needed to convert a given starting material to a given product	Plan a synthesis starting from a target molecule, a retrosynthetic route, or an experimental procedure in	
로 Text to procedure	material to a given product	text format	
器 Reaction digitization		<u> </u>	
ष् Learn	● + ② → ● API Docs →	API Docs →	

Synthesis Planning Tools

Synthesis Planning Tools

trosynthesis sequences					
e Retrosynthesis "OPCW 1_20241117_:	13:00:56.061" ha	s the following s	equences		
Name	Sequence	Confidence	N° of steps		
OPCW 1_20241117_13:00:56.061	0	0.963	1	☆	2
OPCW 1_20241117_13:00:56.141	1	0.924	2	☆	CZ
OPCW 1_20241117_13:00:56.208	2	0.869	1	☆	C
OPCW 1_20241117_13:00:56.256	3	0.863	2	☆	2
OPCW 1_20241117_13:00:56.324	4	0.815	1	☆	2
OPCW 1_20241117_13:00:56.365	5	0.639	2	☆	2

Robotics and Automation

Laboratory robots and "cobots"

From automated equipment and robotic arms...

Laboratory robots and "cobots"

...to self-driving labs

https://www.youtube.com/watch?v=srC3c6lQL2w

OPCW OFFICIAL

Emerald Cloud Lab

https://www.youtube.com/watch?v=SJ0ZP-xEkBM

Chemical Safety

- Mixed reality training
- Predictive maintenance
- Real-time monitoring
- Toxicity prediction
- Improved risk assessment models
- Hazardous chemical substitution

Chemical Detection, Identification, and Forensics

AI is improving:

- speed
- accuracy
- reliability


Data analysis and pattern recognition

- Analyse vast datasets rapidly
- Discern patterns, correlations, and anomalies
- Identify compounds or trace substances with high accuracy and speed

Time needed for analysis and interpretation

Real-time monitoring and detection

- Analysis of sensor data and make immediate decisions
- Predictive alerts of chemical threats
- Identification of exposure risks in a chemical plant

Personnel safety

Scientific Advisory Board 2024

S&T under review

- Independent advisory board
- 25 experts
- Report on developments to Review Conferences

- $\circ \ \ \text{Increase safety}$
- Optimise resources
- o Streamline processes
- o Enhance risk assessment
- Generate training scenarios
- Strengthen capacity building
- Improve detection capabilities
- Reinvigorate MedCM research
- Leverage open-source data
- Identify emerging threats
- Monitor advances in S&T
- o Design new materials
- Predict spectral data
- Fuse spectral data

(POTENTIAL) RISKS

• Predict toxicity **Optimise production** Disguise illicit purchases Spread misinformation Identify novel syntheses Design hazardous chemicals Ο Proliferate sensitive knowledge Ο Hack chemical control systems 0 Provide fast access to info Reduce technical barriers Optimise dissemination Identify vulnerabilities Circumvent controls Evade detection

Artificial Intelligence

"

The OPCW should closely monitor the rapid development in AIassisted chemistry and machine learning and consider not just the potential risks that it poses, but also the opportunities it presents

SAB recommendation

June **2022**

📍 OPCW HQ

AI Meeting with Experts

Technical Secretariat

S/2289/2024	
23 May 2024	
ENGLISH only	

NOTE BY THE TECHNICAL SECRETARIAT

ARTIFICIAL INTELLIGENCE AND THE OPCW: A MEETING WITH EXPERTS

BACKGROUND

- The Technical Secretariat (the Secretaria) resently yield a meeting with external sepert: on artificial technology and its potential ramifications for the Chemical Weapons Convention (the Convention) and the work of the OPCW. This Note explains the rationale behind the meeting, important takesways, and the path forward for the Secretariat.
 - DEVELOPMENTS IN SCIENCE AND TECHNOLOGY
- 2. Development: in science and technology are sólvanzing at an unparalleled poer. Scientific reservit and development have evolved into complex, dramin, and interdisciplinary endoavoure, blurning the traditional boundaries between the physical, chemical), biological, and digital domains. Furthwareness, technologies are converging, often lasking to synapsifier advances and noval applications, or are being reachly transferred from one sector to nooker.
- 3. Under the Convention, the OPCW is mandmed to consider measures to makes use of advances in censes and steahoutgon in its writeficular activities.¹ In addition, the Convention supervisivy mandmits the Conference of that Statuse Patters (the Conference) to review resulting: and technological development that mould affer the approximation of the Convention.² In this context, the Second Review Conference³ underliand the importance of the OPCW keeping abvest of development that its cinesa and used to halve the object and purpose of the Convention (paragraph 9.129 of Rc.24, dated 18 April 2005).
- 4. Furthermore, at its Twenty-Eighth Section, the Conference requested, inter allo, the Section "in the dictories of its matchine under the Convertion, to continue efforts to sustain and build its capabilities to investigate allegations of use of chemical wayons, including frough the further development of tools and methodologies [...] and by any other mass: the Director-General deems necessary and appropriate [Openting Paragraph of C-13DBCC], and s0 Normalies 2023).

Paragraph 6 of Article VIII.

- ² Subparagraph 21(h) of Article VIII.
 - Review Conference = Special Session of the Conference of the States Parties to Review the Operation of the Chemical Wespons Convention

CS-2024-4775(E) distributed 23/05/2024

S/2289/2024, dated 23 May 2024

April **2024**

June 2024

AI and WMD

Keynote address, rethinkingarmscontrol.org

April **2024**

June **2024**

October 2024

💎 Rabat, Morocco

Global Conference

Role of Artificial Intelligence in Advancing the Implementation of the CWC

- Enhance understanding of AI
- Contextualise developments
- Inform future policy discussions

Topics included chemistry, policy, security, and opportunities and challenges to implementation of the CWC

Kingdom of Morocco

June 2024

October 2024

January **2025**

🕈 Rabat, Morocco

Global Conference

190 delegates

46 States Parties

Kingdian of Marries

Conference Proceedings

Global Conference on the Role of Artificial Intelligence in Advancing the Implementation of the Chemical Weapons Convention 22 - 24 October 2024 Rabat, Moroco

2024

October 2024

January **2025**

Available on Catalyst

OPCW HQ

Temporary Working Group on AI

Objectives

Understand the impact of AI on the CWC and identify the risks and opportunities for its implementation

Duration of **1 year**

Composition

Approximately 15 members

October **2024**

January **2025**

💡 ОРСЖ НО

Temporary Working Group on AI

Data prediction and generation Automated synthesis Synthesis planning Data curation Data fusion October **2024**

January **2025**

OPCW AI Research Challenge

Crowdsourcing innovative AI solutions to assist the OPCW

Identify how AI can be used to strengthen the OPCW's capabilities and increase its readiness to address current and future challenges

OPCW OFFICIAL

Next Steps

Summary

AI produces diverse outputs and has a broad range of applications

In chemistry, AI:

- accelerates
 - progress
- increases accuracy
- improves process optimisation
- enhances safety

3

The OPCW is making progress in identifying the potential risks and opportunities AI poses to the Convention

