

Spiez CONVERGENCE 2018

S&T @ crossroad of chemistry and biology

RC-4, Science for Diplomats, 23 Nov. 2018

Stefan Mogl, Beat Schmidt Spiez Laboratory

Spiez CONVERGENCE workshop series 2014 / 2016 / 2018

- Explore S&T challenges to CWC and BWC
- 3rd Review of S&T at intersection of biology and chemistry
- Participants from academia, industry, arms control

Subjects Reviewed 2018

- CRISPR Genome editing
- Synthetic Biology
- Synthetic and Analytical Chemistry
- Material Sciences including Nanotechnology
- Additive Manufacturing
- Bioinformatics, Omics, and Big Data
- Policy discussion

Revisiting subjects:

- Deeper understanding of maturity
- Shows speed of progress
- Relevance
- Allows better predictions

CRISPR Genome editing: Trends and industrial applications

- Makes genome editing:
 - Easier
 - Faster
 - More accessible
- Target any gene
- With biocatalysts cause variety of desired modifications
- Practical applications:
 - Reversal of antibiotic resistance in bacteria
 - Development of diagnostic techniques

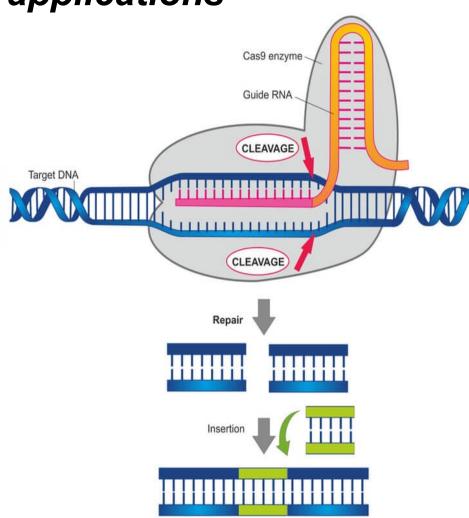
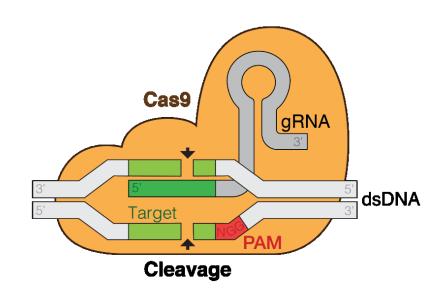
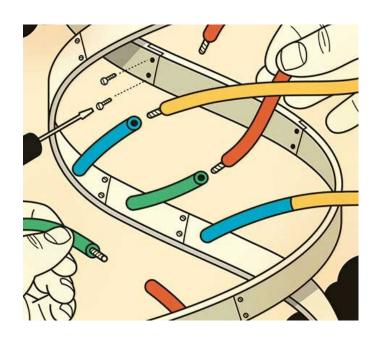



Image: https://labiotech.eu

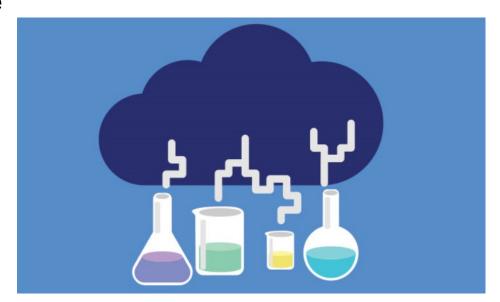
CRISPR Genome editing:Trends and industrial applications


- Many applications still at proofof-concept stage
- Practical challenges before clinical application of CRISPR based therapeutics:
 - Delivery and off-target effects
 - Ethical issues regarding gene editing in the germ line

Synthetic Biology: Trends and industrial applications

- Industry manufactures complex biomolecules using synthetic biology
- In vitro designs provide access to oligosaccharides, proteins, assays
- Moving to in vivo systems requires change from engineering design to evolution

Synthetic Biology: Trends and industrial applications


- Analysis of pathogen specific resistance processes by targeted mutagenesis
- Practical application: diagnostic tests for antibiotic resistance in bacteria
- Limitations remain to engineer biological system
- Tacit knowledge still important

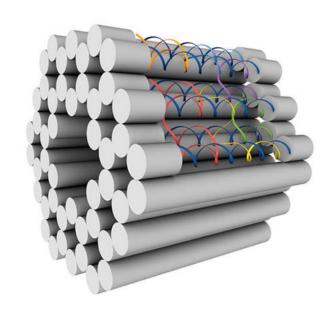
Synthetic Biology: Trends and industrial applications

- Cloud laboratories increase speed of synthesis
- Provide reproducible environment, standardised protocols
- Security:
 - Utilisation for malevolent purposes?
 - Target for remote attacks?

Synthetic and Analytical Chemistry: Integrated continuous processing

- Distinct advantages over batch production in chemical manufacturing
- Widely applied but not for production of pharmaceuticals
- Many advantages for pharmaceutical manufacturing
- For bio-processes, working with living organisms poses challenges

Synthetic and Analytical Chemistry: Integrated continuous processing


- Supervisory Control And Data Acquisition (SCADA) systems need adaptation for bio-process monitoring and control
- Process optimization is specific for a particular production process
 - Each target molecule requires a dedicated process
- Development of continuous bio-manufacturing processes for a range of pharmaceutical products
 - Target specificity is serious obstacle

Synthetic and Analytical Chemistry: Integrated continuous processing

- Radial synthesizer as solution:
 - Automated, remotely controlled, modular assembly system
 - Manufactures several small molecules
 - Using same hardware
 - Suitable for multistep syntheses
- Centralisation of chemical synthesis:
 - Operated anywhere
 - Shift in the way chemistry is performed
 - Experiments outsourced to remote automated systems

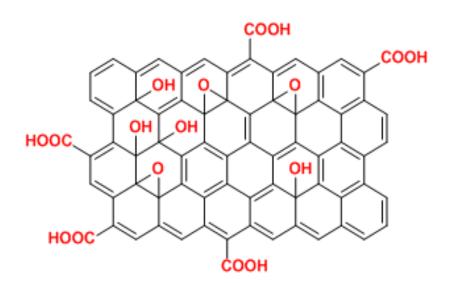
Material Sciences: Nanotechnology

- DNA Origami:
 - Experiments with DNA objects as cancer therapeutics
 - Form rigid DNA structures
 - For targeted drug delivery
- Stability in vivo remains problematic
- Practical applications need manufacturing costs to be reduced

Material Sciences: Nanotechnology for drug delivery

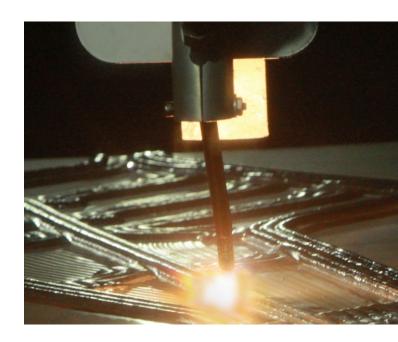
"Functional Food":

- Nanostructure formation by self-organization through biological systems in the body
- Food inspired nanostructures as carrier for drugs

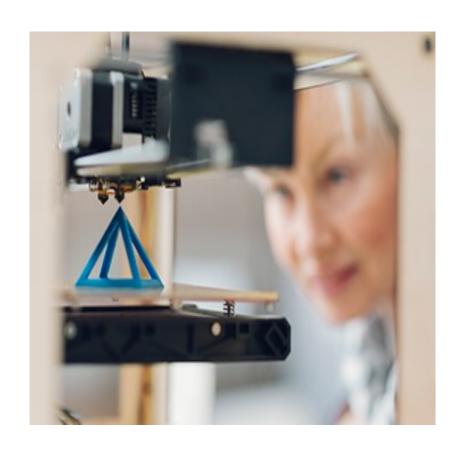

Nanocarriers:

- To improve the efficacy of drugs
- Design stimuli responsive delivery systems

Material Sciences: Nanotechnology for drug delivery


- A wide range of treatments use graphene oxides (GO)
- Two-dimensional nano-scale carbon structures
- Easy to functionalise as drug loading structure
- CBW context:
 - Nanoparticles used as aerosols and inhaled
 - Uptake through Blood Brain Barrier
 - Suitable for targeted delivery of toxins

O


Additive Manufacturing (AM)

- AM industry grows rapidly
 - End user controls product design
- Different processes with range of materials available
- Faster manufacturing but cannot compete with sheet metal fabrication
- Complex parts to high performance standards remains a challenge

Additive Manufacturing (AM)

- Of interest for CBW arms control are 3D objects that withstand:
 - High temperature
 - Pressure steam sterilization
 - Highly corrosive chemicals
- Today: only industrial AM systems able to produce such high-quality parts

O

Additive Manufacturing (AM)

- Industrial AM systems require:
 - Professional know-how
 - Technical competence
- Unlikely, 3D printers capable of manufacturing corrosion resistant parts would be available to individuals or consumers soon
- Next 5 years:
 - List of printable materials will grow
 - AM adopted across multiple industries
 - Regulatory standards will have to be developed

♥ Bioinformatics, 'Omics', Big Data: Next Generation Sequencing

- Advances driven by next-generation sequencing (NGS) techniques
 - NGS relies on DNA and RNA as information carriers
 - DNA and RNA can easily be written and read
- Performance today:
 - Parallel read operations of 10 billion molecules in single experiment
 - Precision increased to single molecule manipulations

Bioinformatics, 'Omics', Big Data: Data Protection

- Genomes carry information about individual:
 - Data could be used to link individual to genetic characteristics
 - Compromise privacy rights
 - Multiomics projects challenge the protection of patient-specific data
- For Data Mining: Privacy-preserving technologies need improvement

Bio informatics, Omics and Big Data Artificial Intelligence (AI)

- Al offers way to make sense of vast amounts of data:
 - Machine Learning (ML) progressed to improve predictions with neural network architectures
 - Requires access to Big Data and high computational power
- Expl. of predictive power:
 - Reaction performances for organic syntheses
 - Builds models from simple representations of chemical and biological entities
 - Suggest structures with improved properties
 - Expands number of synthesizable materials
- Reliable safeguards need to be found and implemented

Policy discussion Impact of S&T Advances on Treaties

- Since 2014 focus of discussions shifted:
 - From materials and equipment
 - To information, automation and remote manufacturing
- New opportunities for oversight compliance monitoring and verification

Policy discussion Impact of S&T Advances on Treaties

- Additive manufacturing:
 - Production is moving closer to the point of use
- Bio-manufacturing of pharmaceuticals:
 - Radial synthesisers centralise chemical synthesis
- Synthetic Biology:
 - Cloud laboratories centralise lab work, separate scientist from lab experiment
- Consequences:
 - Role of end-users or actors in process is changing
 - Access to data and intangibles transfers become more relevant (regulation, control)

Policy discussion: How would changes affect potential CBW programmes?

- Novel CBW production facilities compared to past state programs:
 - Smaller footprint
 - Different technological features
- Non-state actors:
 - Attempts to remain opportunistic
 - Constraints: materials, equipment, agent dissemination, costs
 - Tacit knowledge
- State actor:
 - How to fit new materials and methods into contemporary CBW programme?
 - CBW as WMD vs. sabotage, assassinations
- Are Implementation systems still effective in this changing environment?

Policy discussion Impact of S&T Advances on Treaties

- Multi-stakeholder approaches
 - Academia, Industry, National Authority
 - Develop Partnership and Gov. Systems
- Evaluations may have a short and longer-term perspective:
 - 3D printers could require swift response to manage risks
 - Cloud services in chemical and biological manufacturing may affect implementation over time
- Spiez CONVERGENCE wants to support assessment of S&T advances by stakeholder communities of CWC and BWC