Science ABC related to the large scale industry production of chemicals

TRENDS IN BIOPRODUCTION AND BIOREACTOR DESIGN IN RELATION TO PRODUCTION OF SPECIALTY CHEMICALS

Dr. Ir. Nico Oosterhuis CTO – Celltainer Biotech BV, The Netherlands

Zagreb, October 3rd, 2017

Example of producing bio-based chemicals

Technologies / unit operations

UPSTREAM

DOWNSTREAM

REACTION / FORMU-LATION

Mixing raw materials

Sterilization

Fermentation

Cell separation (filtration, centrifugation, sedimentation)

Purification (crystallization, filtration, chromatography, IX, etc.)

Concentration (filtration, spray-drying, etc.) Reaction (enzymatic, catalytic)

Mixing

Concentration (filtration, spray-drying, etc.)

Process lay-out example

(biocatalysis of ferulic acid to vanillin by Streptomyces sp., Givaudan)

Typical fermentation factories

Biopharmaceuticals

Requirements to run a fermentation process

- Raw materials
- Gene technology
- Fermentation equipment (up to large scale)
- DSP equipment
- Process and fermentation knowledge
- Sterility engineering
- Operational excellence

Starch Sugar Cellulose Carbohydrates Glycerol

Lysine – factory under construction (Russia)

(Traditional) stirred tank bioreactor (STR)

Microbial: not only STR

Evolution of bioreactor and its trends / developments

Cell culture bioreactors

Vaccine production (verocells), Sanofi-Pasteur, 1985

Stirred bioreactor - most commonly used

Improved mixing

Less energy

Higher mass transfer

Low shear

Combinations

12

www.opcw.org

Bioreactor trends

- Large-scale bioreactors
 - · special stirrer designs / combinations
- Single-use
 - No cleaning (validation)
 - Less infrastructure
 - Sterility guarantee
- Continuous processing => smaller bioreactors
 - Perfusion high cell density / volumetric productivity
 - Micro-carriers new (dissolving) materials
- Instrumentation
 - · Better level of process control
 - More in-line / difficult for single-use
 - Model based process control

Dedicated facilties

Smaller reactors

Biopharmaceuticals

- All based on gene technologies
- Produced in multi-purpose installations
- Dedicated purification processes

AND:

- Introduction of single-use equipment makes installations more versatile
- Installations can be used for production of:
 - Toxins
 - Viruses
 - Modified bacteria / viruses
 - Etc.

Single-use bioreactors

SAFETY

- Pre-sterilized
- No contamination

COSTS

- No cleaning
- Simple infrastructure
- Lower maintenance

REQUIREMENTS

- Equipment
- Bags
- Components
- Clean room(s)
- Experience

www.opcw.org 16

Biotoxin production: requirements

- (Single-use) bioreactor
- Simple laboratory
- Micro-organism + process
- Simple filtration or purification (crystallization)

Product	Production strain	Process
Dysport®	Hall	Fermentation Dialysis Chromatography
Azzalure ⁶	Hall	Fermentation Dialysis Chrometography
Botox [®]	Allergan "hyper"	Fermentation Precipitation "Crystallisation"
Vistabel® & Vistabex®	Allergan "hyper"	Fermentation Precipitation "Crystallisation"
Xeomin [®]	Hall	[Unpublished]
Bocouture®	Hall	[Unpublished]

Conclusions in relation to (bio)chemical weapons

LARGE SCALE PROCESSES

- Fermentation processes are very dedicated
- Raw material position required
- Capital and energy intensive productions
- Bio-building blocks to be used for further chemical modifications

SMALL SCALE PROCESSES

- Introduction of single-use technologies: less infrastructure required
- Limited number of technology suppliers (US/Europe)
- Installations too small for production of chemical weapons
- Avaibalilty of genetic modification techniques
- Production of bio-toxins / viruses / bacteria becomes more easy

www.opcw.org