

At SAB-22, The Director-General requested the Scientific Advisory Board (SAB) to:

- make technical recommendations on isotopic labelling of chemicals relevant to Schedule 1, 2 and 3 under the Chemical Weapons Convention – in light of the SAB's previous advice on CAS registry numbers (RC-2/DG.1, dated 28 February 2008, in paragraph 3.5 of the Annex);
- assess whether the chemical properties of a chemical are altered, when subject to isotopic labelling, in a manner that would affect its relevance to the schedules of chemicals under the Chemical Weapons Convention; and
- make technical recommendations on how stereoisomers of chemicals relevant to Schedule 1, 2 and 3 under the Chemical Weapons Convention should be considered in relation to the Convention, taking into account the SAB's previous advice on CAS registry numbers (RC-2/DG.1, dated 28 February 2008, in paragraph 3.5 of the Annex).

Working together for a world free of chemical weapons

OPCW CENTRAL ANALYTICAL

OCAD y 18

@OPCW2016 Serial Nr:169

DATABASE

ORGANISATION FOR THE PROFEMITION OF

RESPONSE TO THE DIRECTOR-GENERAL'S REQUEST TO THE SCIENTIFIC ADVISORY BOARD TO PROVIDE FURTHER ADVICE ON SCHEDULED CHEMICALS

1. RECCOMENDATIONS

ORGANISATION FOR THE

1

PROHIBITION OF CHEMICAL WEAPONS

- 1.1 The Scientific Advisory Board (SAB) has considered isotopically labelled scheduled chemicals and stereoisomers of scheduled compounds relating to the Convention according to the Director-General's requests (see Appendixes 1 and 2).
- 1.2 **Recommendation 1**. The SAB recommends that the molecular parent structure of a chemical should determine whether it is covered by a schedule entry. This is because:
 - (a) it is inappropriate to rely solely upon Chemical Abstracts Service (CAS) numbers to define chemicals covered by the schedules. Although relevant as aids to declaration and verification, CAS numbers should not be used as the means to identify a chemical, or to determine whether a chemical is included in, or excluded from, a schedule;
 - (b) thus, if a chemical is included within a schedule, then all possible isotopically-labelled forms and stereoisomers of that chemical should be included, irrespective of whether or not they have been assigned a CAS number or have CAS numbers different to those shown in the Annex on Chemicals to the Convention. The isotopically labelled compound or stereoisomer related to the parent chemical specified in the schedule should be interpreted as belonging to the same schedule; and
 - (c) this advice is consistent with previous SAB views on this topic.¹
- 1.3 **Recommendation 2.** Inclusion of appropriate analytical data in the OPCW Central Agent Database (OCAD) for isotopically labelled relatives of scheduled compounds where available is recommended.

RG-2/DG.1, dated 28 February 2008, in paragraph 3.5 of its Annex.

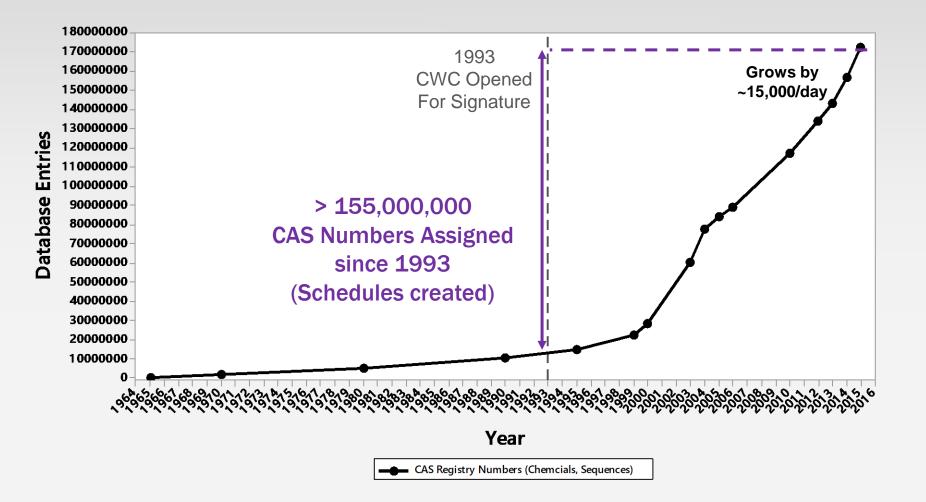
Working together for a world free of chemical weapons

Part 1: Chemical Abstracts Service (CAS) Registry Number?

Is a unique numeric identifier

Designates only one substance

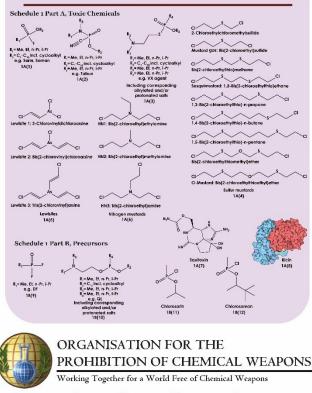
Contains no chemical information, yet is a link to a wealth of information about a specific chemical substance



Part 1: Chemical Abstracts Service (CAS) Registry Number?

How Many CAS Registry Numbers Have Been Assigned?

Scheduled Chemicals under the Chemical Weapons Convention (CWC)

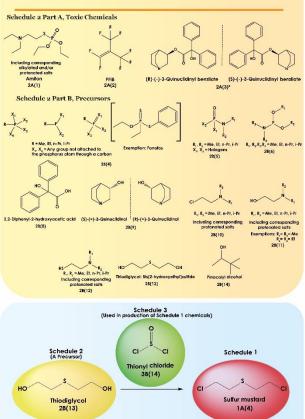

Guidelines for Schedule 1

@opcw @opcw_st

The following criteria shall be taken into account in considering whether a toxie chemical or precursor should be included in Schedule 1:

Schedule 1

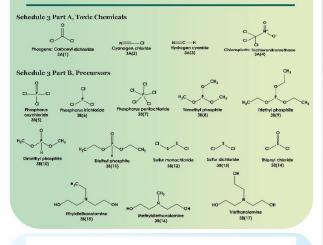
- (a) It has been developed, produced, stockpiled or used as a chemical weapon as defined in Article II;
- (b) It poses otherwise a high risk to the object and purpose of this Convention by virtue of its high potential for use in activities prohibited under this Convention because one or more of the following conditions are met:
 - It possesses a chemical structure closely related to that of other toxic chemicals listed in Schedule 1, and has, or can be expected to have, comparable properties;
 - (ii) It possesses such lethal or incapacitating toxicity as well as other properties that would enable it to be used as a chemical weapon;
 - (iii) It may be used as a precursor in the final single technological stage of production of a toxic chemical listed in Schedule 1, regardless of whether this stage takes place in facilities, in munitions or elsewhere;
- (c) It has little or no use for purposes not prohibited under this Convention.

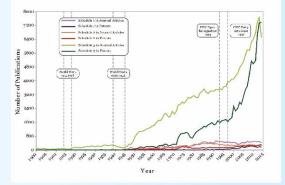

f /opcwonline 🛗 /opcwonline in /company/opcw @/opcw

Guidelines for Schedule 2

The following criteria shall be taken into account in considering whether a toxic chemical not listed in Schedule 1 or a precursor to a Schedule 1 chemical or to a chemical listed in Schedule 2, part A, should be included in Schedule 2:

- (a) It poses a significant risk to the object and purpose of this Convention because it possesses such lethal or incapacitating toxicity as well as other properties that could enable it to be used as a chemical weapon;
 (b) It may be used as a precursor in one of the chemical reactions at the final
- (b) It may be used as a precursor in one of the chemical reactions at the final stage of formation of a chemical listed in Schedule 1 or Schedule 2, part Λ;
- (c) It poses a significant risk to the object and purpose of this Convention by virtue of its importance in the production of a chemical listed in Schedule 1 or Schedule 2, part A;
- (d) It is not produced in large commercial quantities for purposes not prohibited under this Convention.


Relationship between Schedules, illustrated with sulfur mustard.

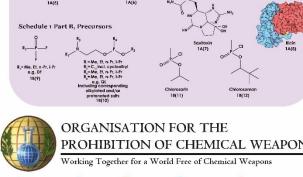

Schedule 3

Guidelines for Schedule 3

The following criteria shall be taken into account in considering whether a toxic chemical or precursor, not listed in other Schedules, should be included in Schedule 3:

- (a) It has been produced, stockpiled or used as a chemical weapon;(b) It poses otherwise a risk to the object and purpose of this Convention
- because it possesses such lethal or incapacitating toxicity as well as other properties that might enable it to be used as a chemical weapon; (c) It poses a risk to the object and purpose of this Convention by virtue of
- (c) It poses a risk to the object and purpose of this Convention by virtue of its importance in the production of one or more chemicals listed in Schedule 1 or Schedule 2, part B;
- (d) It may be produced in large commercial quantities for purposes not prohibited under this Convention.

Scheduled chemicals are both scientifically and economically important as illustrated by the number of yearly publications that refer to them.

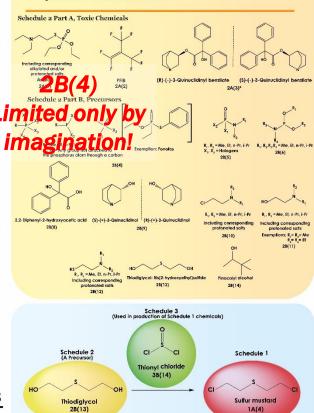

Scheduled Chemicals under the Chemical Weapons Convention (CWC)

Guidelines for Schedule 1

The following criteria shall be taken into account in considering whether a toxic chemical or precursor should be included in Schedule 1:

Schedule 1

- (a) It has been developed, produced, stockpiled or used as a chemical weapon as defined in Article II;
- (b) It poses otherwise a high risk to the object and purpose of this Convention by virtue of its high potential for use in activities prohibited under this Convention because one or more of the following conditions are met:
 - (i) It possesses a chemical structure closely related to that of other toxic chemicals listed in Schedule 1, and has, or can be expected to have, comparable properties;
 - (ii) It possesses such lethal or incapacitating toxicity as well as other properties that would enable it to be used as a chemical weapon;
- (iii) It may be used as a precursor in the final single technological stage of production of a toxic chemical listed in Schedule 1, regardless of whether this stage takes place in facilities, in munitions or elsewhere; (c) It has little or no use for purposes not prohibited under this Convention.
- land ant Bist2.c Ω ard: 1.2-Bis/2-chio 1,3-Bis(2-chloroethylthio)-n-propan 1,4-Bis(2-chloroethyithio)-n-butan 1,5-Bis(2-chloroethylthio)-n-pentan iomethyllethe thioethyl)ethe Sulfur mustards 1A(4) stsite 3: Tris(2-chlorovinyl)arsine HN3: Tris(2-chloroethyl)gr Nitrogen mu 1A(6) 14(5) Schedule 1 Part B. Precursors R,= Me, Et, n-Pr, i-P e.g. DF Chlorosarin Chlorosoman ORGANISATION FOR THE PROHIBITION OF CHEMICAL WEAPONS Working Together for a World Free of Chemical Weapons

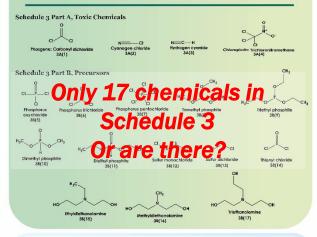


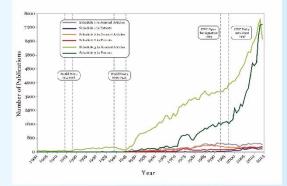
Schedule 2

Guidelines for Schedule 2

The following criteria shall be taken into account in considering whether a toxic chemical not listed in Schedule 1 or a precursor to a Schedule 1 chemical or to a chemical listed in Schedule 2, part A, should be included in Schedule 2:

- (a) It poses a significant risk to the object and purpose of this Convention because it possesses such lethal or incapacitating toxicity as well as other properties that could enable it to be used as a chemical weapon; It may be used as a precursor in one of the chemical reactions at the final
- (\mathbf{b}) stage of formation of a chemical listed in Schedule 1 or Schedule 2, part A;
- It poses a significant risk to the object and purpose of this Convention (c) by virtue of its importance in the production of a chemical listed in Schedule 1 or Schedule 2, part A;
- (d) It is not produced in large commercial quantities for purposes not prohibited under this Convention.

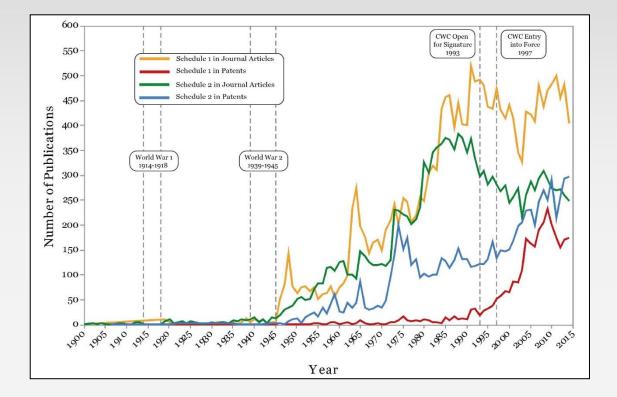

Relationship between Schedules, illustrated with sulfur mustard.


Schedule 3

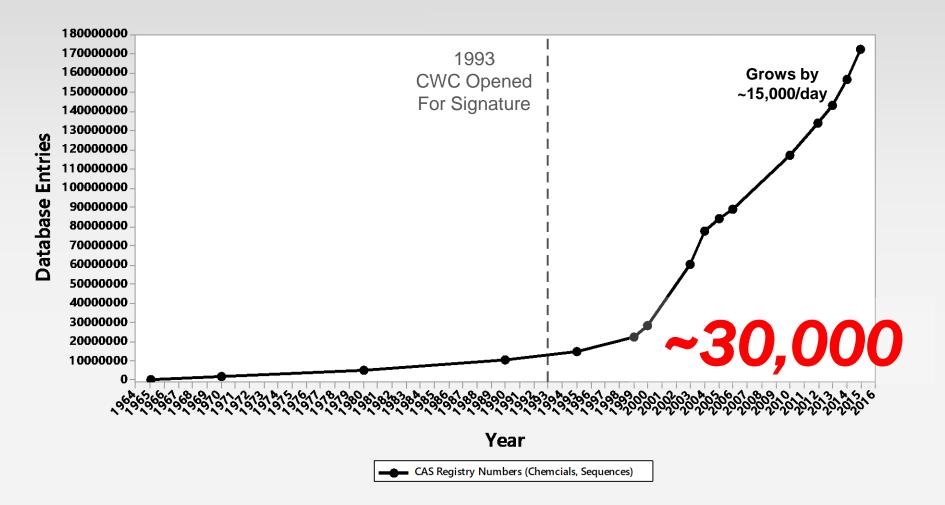
Guidelines for Schedule 3

The following criteria shall be taken into account in considering whether a toxic chemical or precursor, not listed in other Schedules, should be included in Schedule 3:

- (a) It has been produced, stockpiled or used as a chemical weapon; (b) It poses otherwise a risk to the object and purpose of this Convention
- because it possesses such lethal or incapacitating toxicity as well as other properties that might enable it to be used as a chemical weapon; (c) It poses a risk to the object and purpose of this Convention by virtue of
- its importance in the production of one or more chemicals listed in Schedule 1 or Schedule 2, part B;
- (d) It may be produced in large commercial quantities for purposes not prohibited under this Convention.

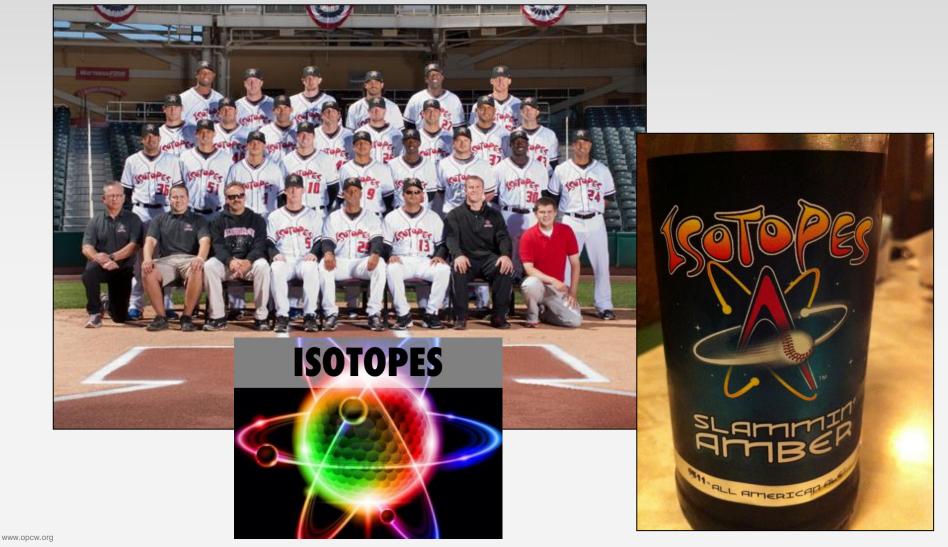


Scheduled chemicals are both scientifically and economically important as illustrated by the number of yearly publications that refer to them.



Working together for a world free of chemical weapons

How Many Scheduled Chemicals Have CAS Registry Numbers?


How Many Scheduled Chemicals Have CAS Registry Numbers?

Sche	dule 1	(CAS registry number)	•
Α.	Toxic chemicals:	number	
(1)	O-Alkyl (≤C ₁₀ , incl. cycloalkyl) alkyl (Me, Et, n-Pr or i-Pr)-phosphonofluoridates		55 in Annex
	e.g. Sarin: O-Isopropyl methylphosphonofluoridate Soman: O-Pinacolyl methylphosphonofluoridate	(107-44-8) (96-64-0)	on Chemicals (3 are not
(2)	O-Alkyl (≤C10, incl. cycloalkyl) N,N-dialkyl (Me, Et, n-Pr or i-Pr) phosphoramidocyanidates		Scheduled)
	e.g. Tabun: O-Ethyl N,N-dimethyl phosphoramidocyanidate	(77-81-6)	
(3)	O-Alkyl (H or $\leq C_{10}$, incl. cycloalkyl) S-2-dialkyl (Me, Et, n-Pr or i-Pr)-aminoethyl alkyl (Me, Et, n-Pr or i-Pr) phosphonothiolates and corresponding alkylated or protonated salts		
	e.g. VX: O-Ethyl S-2-diisopropylaminoethyl methyl phosphonothiolate	(50782-69-9)	
(4)	Sulfur mustards:		
	2-Chloroethylchloromethylsulfide Mustard gas: Bis(2-chloroethyl)sulfide Bis(2-chloroethylthio)methane Sesquimustard: 1,2-Bis(2-chloroethylthio)ethane 1,3-Bis(2-chloroethylthio)-n-propane 1,4-Bis(2-chloroethylthio)-n-butane 1,5-Bis(2-chloroethylthio)-n-pentane Bis(2-chloroethylthio)-n-pentane Bis(2-chloroethylthio)ethyl)ether O-Mustard: Bis(2-chloroethylthioethyl)ether	(2625-76-5) (505-60-2) (63869-13-6) (3563-36-8) (63905-10-2) (142868-93-7) (142868-94-8) (63918-89-1) (63918-89-8)	
	51	Schedules of Chemicals	

Working together for a world free of chemical weapons

Part 2: Isotopes

Working together for a world free of chemical weapons

But First Atoms...

Dalton (1803)

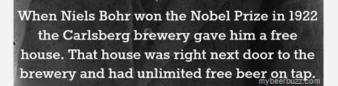
Atom Models in History

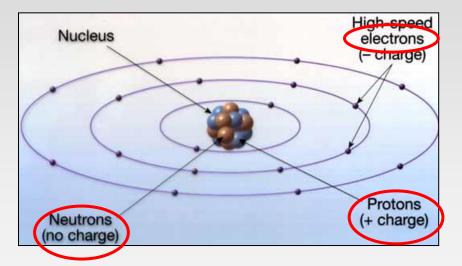
Thomson (1904) (positive and negative charges)

Rutherford (1911) (the nucleus) Bohr (1913) (energy levels) Schrödinger (1926 (electron cloud model

The last 200 years have seen ideas about the atom develop from Dalton's "indivisible atom" where it is the smallest thing possible; to the discovery of sub-atomic particles (electrons, protons & neutrons); to sophisticated understandings about where these particles are found and how they behave.

Each model has allowed hypothesises to be made & predictions tested. This has lead to the development of our knowledge as the technology has improved.

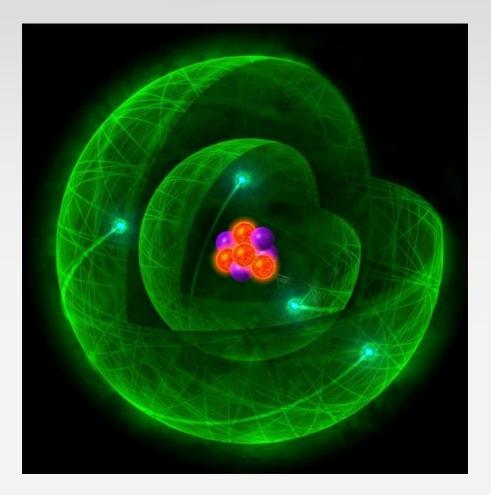




Working together for a world free of chemical weapons

But First Atoms...

Reason #17483028 to be a scientist.



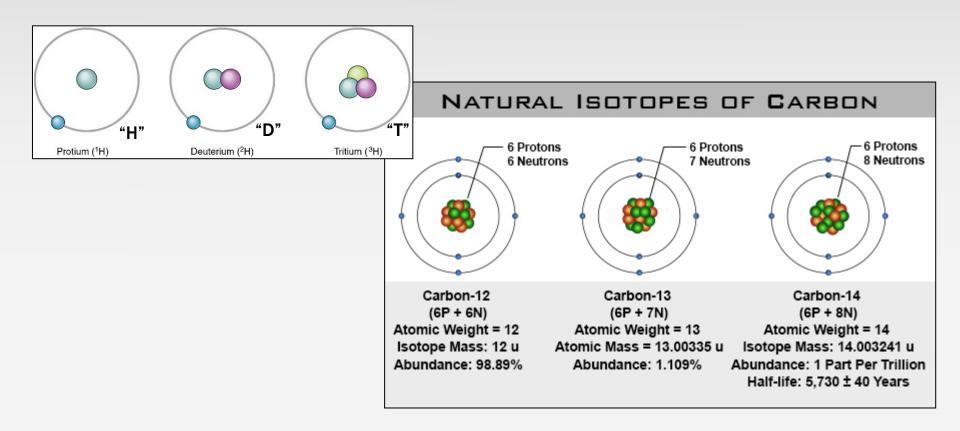
Working together for a world free of chemical weapons

But First Atoms...

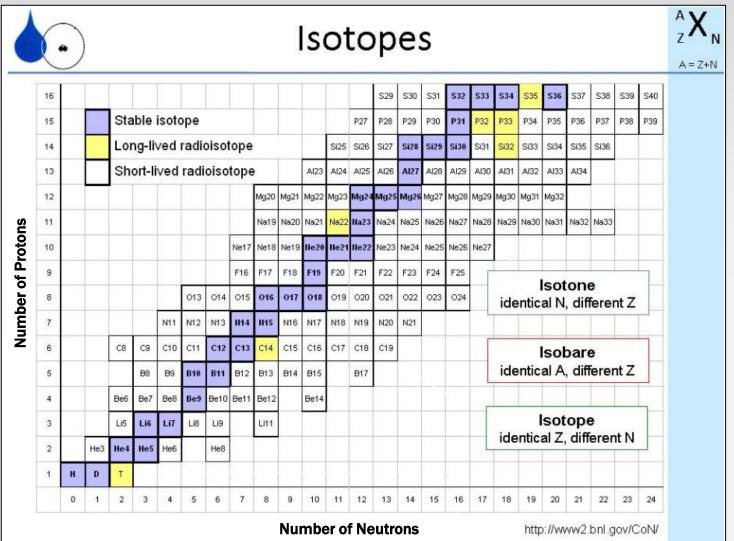
Working together for a world free of chemical weapons

And Elements....

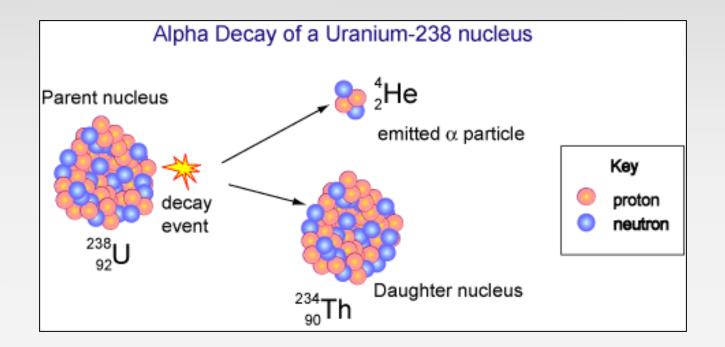
	IUPAC Periodic Table of the Elements										18 2 He						
hydrogen [1.007, 1.009]	2		Key:	P	roton	s = El	ectro	ns (n	eutra	l ator	n)	13	14	15	16	17	helium 4.003
3	4	1	atomic num	ber							· ·	5	6	7	8	9	10
Li	Be		Symbo	ol								В	С	N	0	F	Ne
lithium	beryllium		name									boron	carbon	nitrogen	oxygen	fluorine	neon
[6.938, 6.997]	9.012		standard atomic v	veight								[10.80, 10.83]	[12.00, 12.02]	[14.00, 14.01]	[15.99, 16.00]	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	P	S	CI	Ar
sodium	magnesium	3	4	5	6	7	8	9	10	11	12	aluminium	silicon	phosphorus	sulfur	chlorine	argon
22.99	[24.30, 24.31]	100001010			I	-				110000		26.98	[28.08, 28.09]	30.97	[32.05, 32.08]	[35.44, 35.46]	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium 39.10	calcium 40.08	scandium 44.96	titanium 47.87	vanadium 50.94	chromium 52.00	manganese 54.94	iron 55.85	cobalt 58.93	nickel 58.69	copper 63.55	zinc 65.38(2)	gallium 69.72	germanium 72.63	arsenic 74.92	selenium	bromine [79.90, 79.91]	krypton 83.80
39.10	38	39	47.67	41	42	43	44	45	46	47	48	49	50	51	78.97	53	54
		V										-	0.000	0.0507		55	
Rb	Sr	Y vttrium	Zr	Nb	Mo	TC technetium	Ru	Rh	Pd palladium	Ag	Cd cadmium	In	Sn	Sb antimony	Te tellurium	iodine	Xe
85.47	strontium 87.62	88.91	91.22	92.91	95.95	tecnnetium	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	xenon 131.3
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
caesium	barium	lanthanoids	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	[204.3, 204.4]	207.2	209.0	P		
	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
87	00					0						11.1	E1	1. December 1			1.1
87 Fr		actinoids	Rf	Db	Sa	Bh	Hs	Mt	Ds	Ra	Cn	Uut	FL	duU	LV LV	Uus	Uuo
	Ra	actinoids	Rf rutherfordium	Db dubnium	Sg seaborgium	Bh bohrium	HS hassium	Mt meitnerium	DS darmstadtium	Rg roentgenium	Cn copernicium	Uut	flerovium	Uup ununpentium	LV livermorium	Uus ununseptium	Uuo ununoctium


57 60 62 63 65 66 67 68 69 70 71 58 59 61 64 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Yb Tm Lu lanthanum cerium aseodymium neodymium promethium samarium europium gadolinium terbium dysprosium holmium erbium thulium ytterbium lutetium 138.9 162.5 175.0 140.1 140.9 144.2 150.4 152.0 157.3 158.9 164.9 167.3 168.9 173.0 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 INTERNATIONAL UNION OF Cf Pa U Pu Bk Ac Th Np Am Cm Es Fm Md No Lr PURE AND APPLIED CHEMISTRY actinium thorium protactinium uranium neptunium plutonium americium curium berkelium californium einsteinium fermium mendelevium nobelium lawrencium 232.0 231.0 238.0

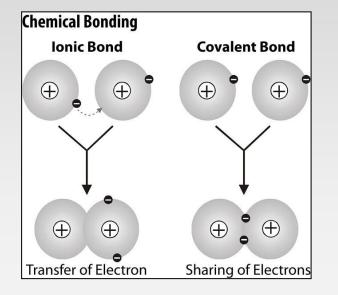
> For notes and updates to this table, see www.iupac.org. This version is dated 8 January 2016. Copyright © 2016 IUPAC, the International Union of Pure and Applied Chemistry.


Working together for a world free of chemical weapons

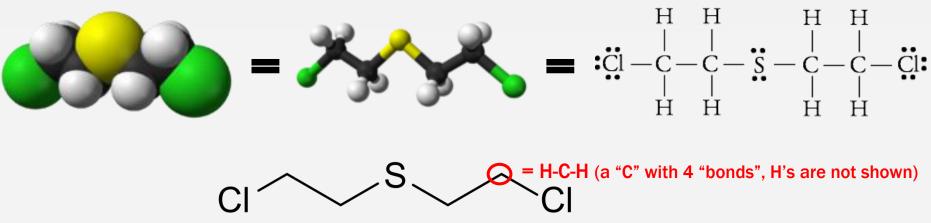
And Elements...



Stable and Unstable Isotopes



Stable and Unstable Isotopes

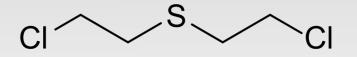


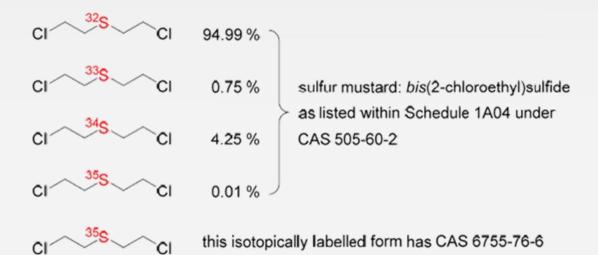
And Back to Atoms... and Molecules

Chemical bonding is all about electrons!

(isotopes do not differ by electrons : chemistry of isotopes of the same element is for practical purposes the same)

What About Scheduled Chemicals?

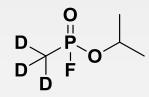



Natural Abundance of Stable Isotopes

Mustard gas: Bis(2-chloroethyl)sulfide

(505-60-2)

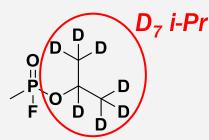
No isotopes indicated for practical purposes, we assume a sample indicated by this structure contains all isotopes of each element in their natural abundance



Working together for a world free of chemical weapons

What Schedule Is It?

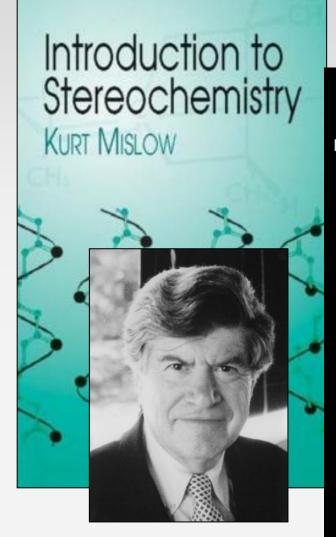
Isopropyl methylphosphonofluoridate

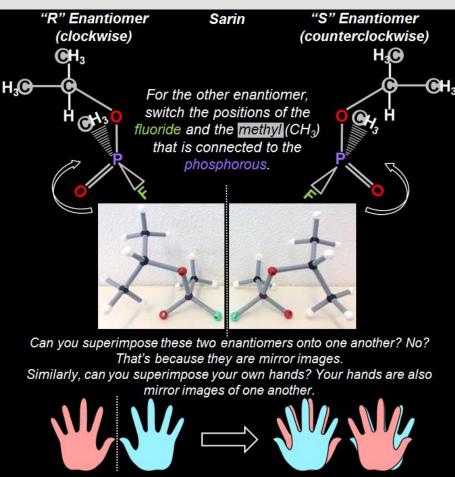

Schee	lule 1	(CAS registry number)					
4 .	Toxic chemicals:	,					
1)	O-Alkyl ($\leq C_{10}$, incl. cycloalkyl) alkyl						
	(Me, Et, n-Pr or i-Pr)-phosphonofluoridates						
	e.g. Sarin: O-Isopropyl methylphosphonofluoridate	(107-44-8)					
	Soman: O-Pinacolyl methylphosphonofluoridate	(96-64-0)					

If CD_3 is considered "not Me", this is unscheduled

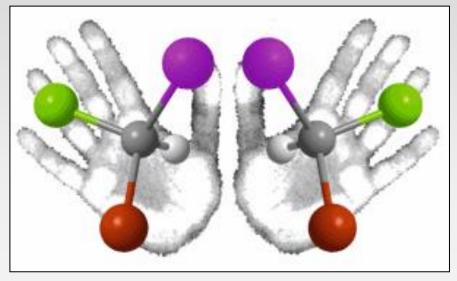
B.	dule 2 Precursors:	Schedule 1A(1) or 2B(4)
(4)	containing a p one methyl, et	cept for those listed in Schedule 1, hosphorus atom to which is bonded hyl or propyl (normal or iso) group carbon atoms,	
	e.g. Methylph Dimethyl	(676-97-1) (756-79-6)	
	Exemption:	Fonofos: O-Ethyl S-phenyl ethylphosphonothiolothionate	(944-22-9)

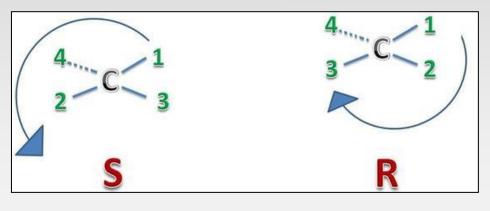
Isopropyl methyl-d3-phosphonofluoridate



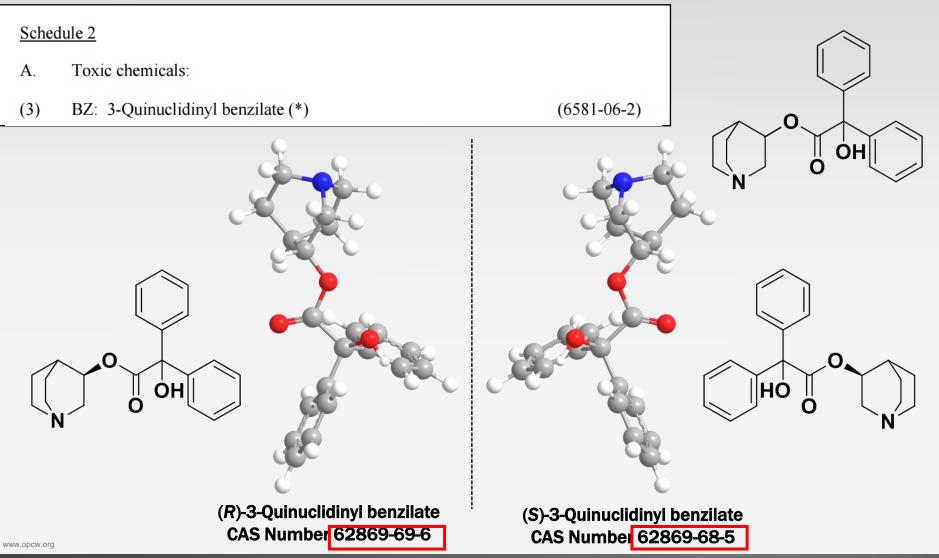

Isopropyl-d7 methylphosphonofluoridate

Working together for a world free of chemical weapons


Part 3: Stereoisomers

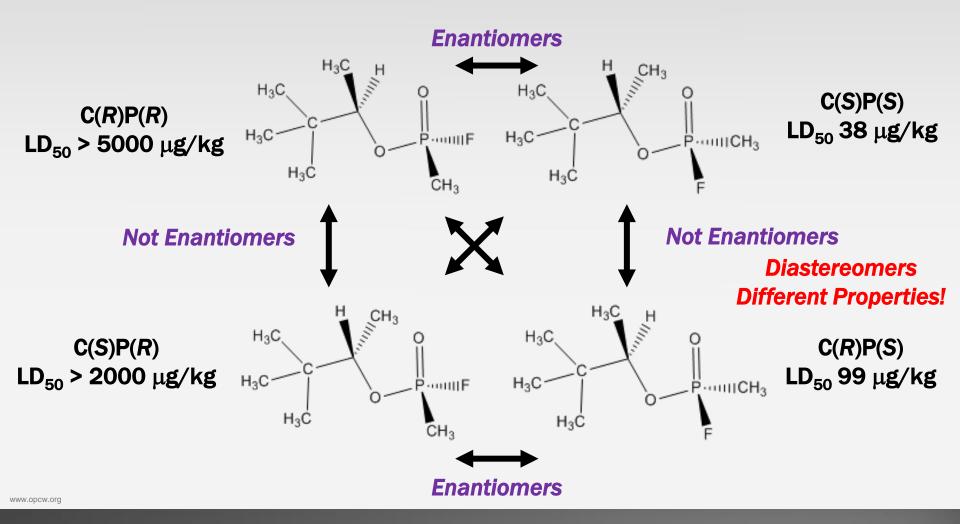


Three Dimensional Molecular Structure

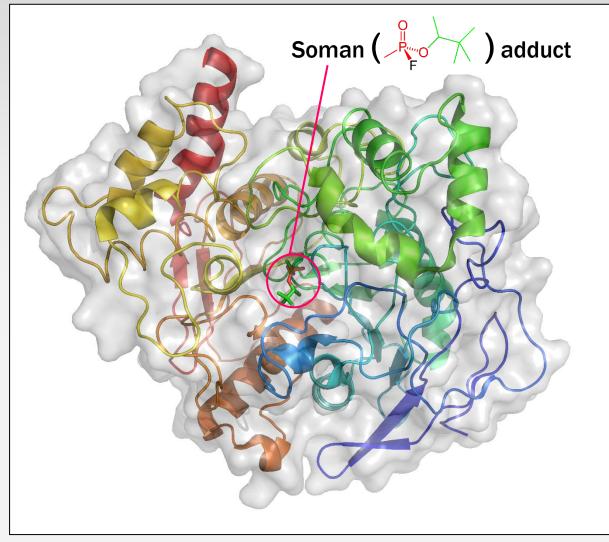


Enantiomers:

- "Mirror image" chemical structures
- Atom with 4 different substituents = "Chiral Center"
- Chemical properties are the same for each enantiomer
- Enantiomers are designated "R" and "S"

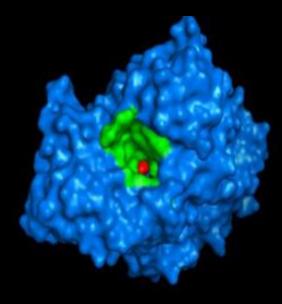


CAS Registry Numbers and Stereoisomers


What if There is More than One Chiral Center?

Working together for a world free of chemical weapons

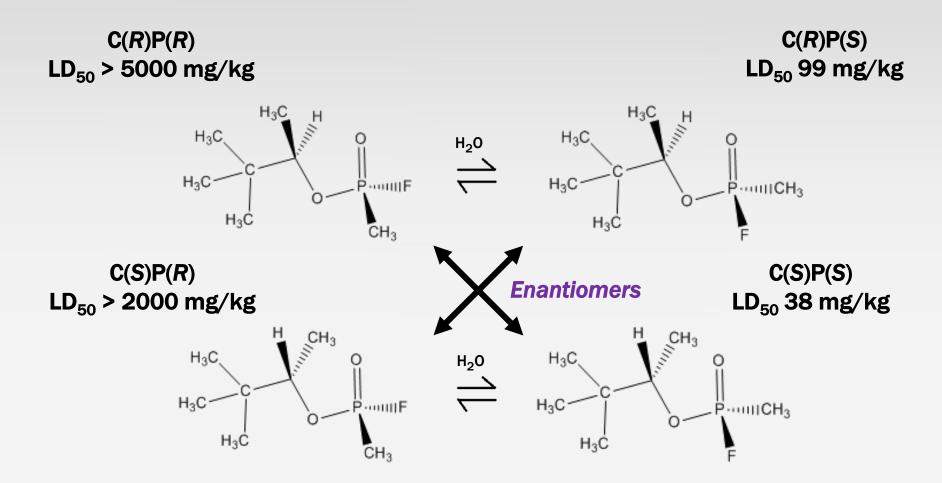
Stereochemistry and Life Processes



C(S)P(R) LD₅₀ > 2000 μg/kg

C(*R*)P(*R*) LD₅₀ > 5000 μg/kg

C(S)P(S) LD₅₀ 38 μg/kg

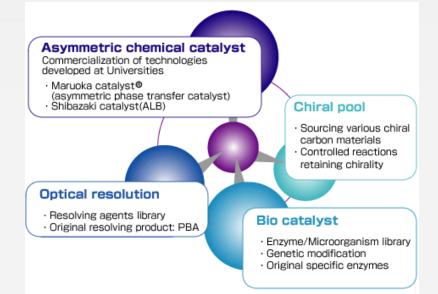

C(*R*)P(S) LD₅₀ 99 μg/kg

Stereochemistry and Life Processes

Less Toxic Forms of Soman?

Things to Know About Stereoisomers

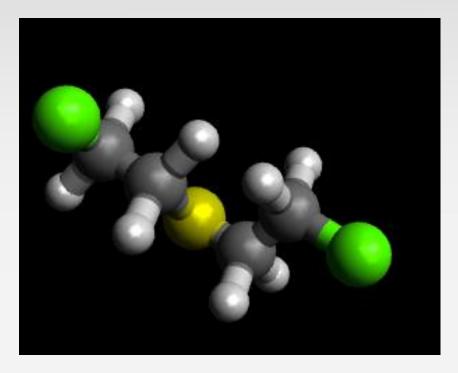
- Not all stereoisomers will interconvert
- Under "Achiral" Conditions

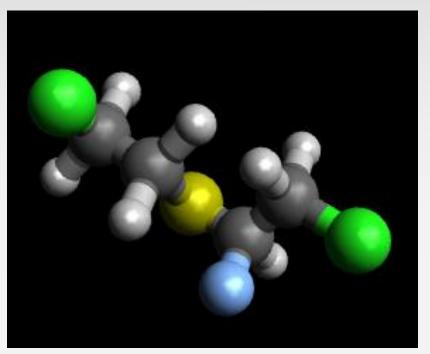

Presence of one might indicate presence of the other

- Chemical synthesis produces racemic mixtures
- Chemical analysis does not distinguish between enantiomers

Preparation and isolation of enantiomers

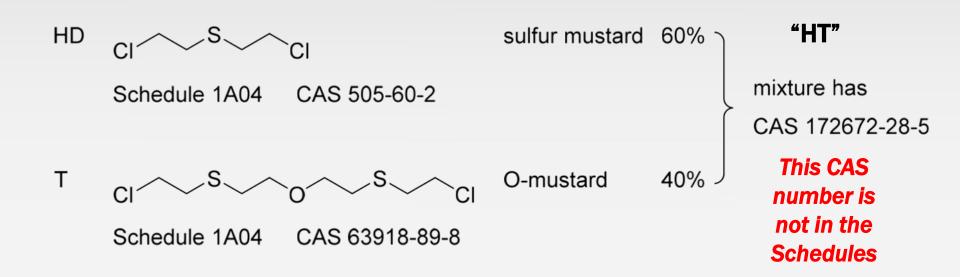
- Chiral synthesis conditions
- Biomediated processes
- Chiral separation conditions


Sampling and analysis is possible with appropriate methods and equipment



Working together for a world free of chemical weapons

Isotopic Labelling and Stereoisomers (That's right, they are not unrelated!)


Sulfur Mustard

Replace "H" with "D" on Carbon 2 *R or S*?

Working together for a world free of chemical weapons

Some Additional Complications: Mixtures!

1

RESPONSE TO THE DIRECTOR-GENERAL'S REQUEST TO THE SCIENTIFIC ADVISORY BOARD TO PROVIDE FURTHER ADVICE ON SCHEDULED CHEMICALS

1. RECCOMENDATIONS

- 1.1 The Scientific Advisory Board (SAB) has considered isotopically labelled scheduled chemicals and stereoisomers of scheduled compounds relating to the Convention according to the Director-General's requests (see Appendixes 1 and 2).
- 1.2 **Recommendation 1**. The SAB recommends that the molecular parent structure of a chemical should determine whether it is covered by a schedule entry. This is because:
 - (a) it is inappropriate to rely solely upon Chemical Abstracts Service (CAS) numbers to define chemicals covered by the schedules. Although relevant as aids to declaration and verification, CAS numbers should not be used as the means to identify a chemical, or to determine whether a chemical is included in, or excluded from, a schedule;
 - (b) thus, if a chemical is included within a schedule, then all possible isotopically-labelled forms and stereoisomers of that chemical should be included, irrespective of whether or not they have been assigned a CAS number or have CAS numbers different to those shown in the Annex on Chemicals to the Convention. The isotopically labelled compound or stereoisomer related to the parent chemical specified in the schedule should be interpreted as belonging to the same schedule; and
 - (c) this advice is consistent with previous SAB views on this topic.¹
- 1.3 **Recommendation 2.** Inclusion of appropriate analytical data in the OPCW Central Agent Database (OCAD) for isotopically labelled relatives of scheduled compounds where available is recommended.

RG-2/DG.1, dated 28 February 2008, in paragraph 3.5 of its Annex.

How Does This Report Relate to the CWC?

Each State Party shall adopt the necessary measures to ensure that toxic chemicals and their precursors are only developed, produced, otherwise acquired, retained, transferred, or used within its territory or in any other place under its jurisdiction or control for purposes not prohibited under this Convention. To this end, and in order to verify that activities are in accordance with obligations under this Convention, each State Party shall subject toxic chemicals and their precursors listed in Schedules 1, 2 and 3 of the Annex on Chemicals, facilities related to such chemicals, and other facilities as specified in the Verification Annex, that are located on its territory or in any other place under its jurisdiction or control, to verification measures as provided in the Verification Annex

CWC Article VI, paragraph 2

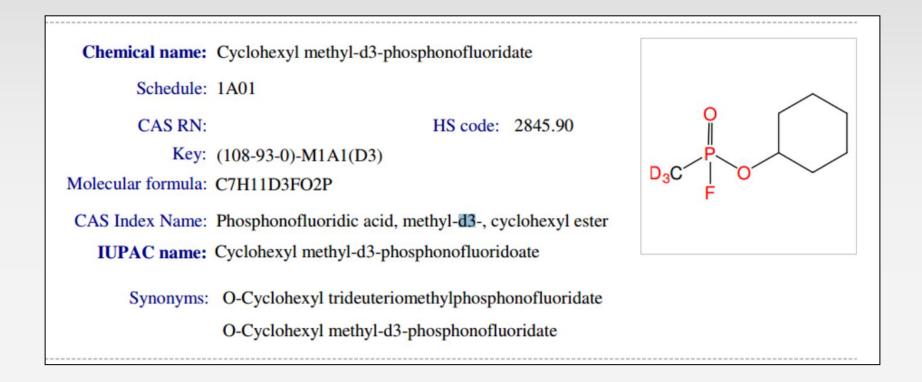
Working together for a world free of chemical weapons

Meeting Obligations

To meet these obligations, and to ensure complete and accurate declarations by CWC States Parties to the OPCW, chemicals that fall under Schedules 1, 2, and 3 of the Convention must be clearly identifiable

Parts VI, VII and VIII to the Convention's Annex on Implementation and Verification set out the relevant requirements

Consistent with Previous Advice from the SAB


One issue that the SAB noted in the context of its previous recommendations on salts is the role of the Chemical Abstracts Service (CAS) Registry Numbers indicated in the schedules of chemicals. The SAB has come to the view that, while the CAS Registry Numbers are a useful aid to identification, they were intended as specific identifiers of scheduled chemicals. There appears to be a question among States Parties about whether these numbers have a regulatory value. The SAB would like to caution against such a view, because there is not necessarily a one-to-one relationship between CAS Registry Numbers and chemical structures. While these numbers are useful in the identification of chemical compounds, this usefulness should not lead to the assumption that they should have any regulatory power within the context of the Convention. At the same time, it could be helpful if the OPCW Declaration Handbook were to provide references to the various CAS numbers that are related to an entry in the schedules (for example, for different isomers of a scheduled chemical and for mixtures containing a scheduled chemical).

RC-2/DG.1, dated 28 February 2008, in paragraph 3.5 of the Annex Declarations Handbook does provide references and examples as suggested

Working together for a world free of chemical weapons

Handbook on Chemicals

https://www.opcw.org/our-work/non-proliferation/declarations-adviser/handbook-on-chemicals/

Working together for a world free of chemical weapons

Moving Forward

- Encourage sharing of this SAB advice with National Authorities
- Continue current practices in regard to declarations handbook and OCAD

More to Come on Isotopes and Chemical Weapons

SAB Workshop #1: Chemical Forensics 20 – 22 June 2016, Helsinki, Finland (report forthcoming)