

Science for Diplomats at EC-83

Chemical Weapons Sample Stability and Storage

12 October 13:30 - 14:45 Ooms Room

(light lunch available at 13:00)

Dr Christophe Curty Spiez Laboratory

Jonathan E. Forman, Ph.D.
OPCW Science Policy Adviser

jonathan.forman@opcw.org

Samples Collected in OPCW Investigations

© Bassam Khabieh/Reuters

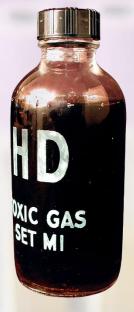
Samples Collected in OPCW Investigations

OPCW

Scientific Advisory Board

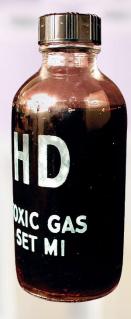
Twenty-Third Session 18 – 22 April 2016

SAB-23/WP.2 25 May 2016 ENGLISH only


RESPONSE TO THE DIRECTOR-GENERAL'S REQUEST TO THE SCIENTIFIC ADVISORY BOARD TO PROVIDE FURTHER ADVICE ON CHEMICAL WEAPONS SAMPLE STABILITY AND STORAGE

1. EXECUTIVE SUMMARY

- 1.1 The Scientific Advisory Board (SAB) has considered the long-term storage and stability of samples collected in the context of the OPCW's investigations, including fact-finding missions and the Declaration Assessment Team, according to the Director-General's questions of 2 November 2015 (see Annex 1).
- 1.2 In the context of the OPCW's investigations, the Technical Secretariat has since 2013 received numerous samples, which are stored in the OPCW Laboratory at room temperature or refrigerated at 4 °C.



Bulk chemicals

Sample Types

Bulk chemicals

Sample Types

Bulk chemicals

Biomedical samples


Highly variable concentration and heterogeneous samples

Director-General's Request for Advice on Long-Term Storage and Stability of Samples Collected in Relation to the Potential Use of Chemical Weapons

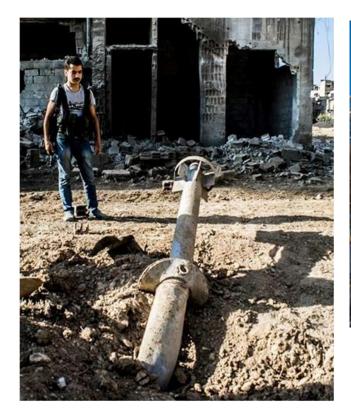
In reference to the sample types described on the previous slide:

- Given the current storage conditions in the OPCW Lab (typically room temperature or 4°C), how quickly and through what process would samples degrade to a point where analysis of the samples would likely no longer return credible results?
- What are the best-practice conditions for long-term sample storage?
- Given these best-practice storage conditions, how quickly and through what type of process could samples degrade to a point where analysis of the samples would likely no longer return credible results?

SAB-23/WP.2 25 May 2016

SAB Response to the Director-General's request to the SAB to provide further advice on CW sample stability and storage

Dr Christophe Curty SAB Member SPIEZ LABORATORY 12.10.2016



Agenda

- Background
- DG's request
- What is known?
- SAB response to the DG's request
- Conclusion

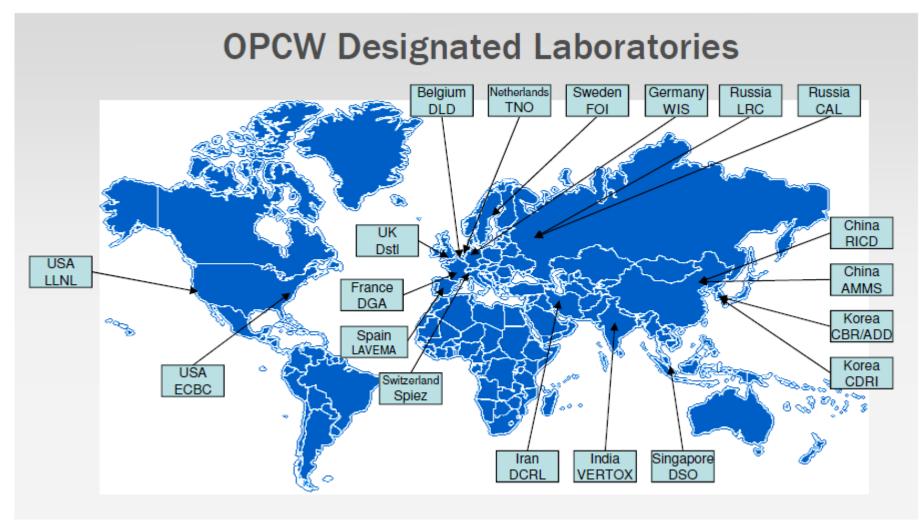
Background Facts

Background Investigation & Sampling

Federal Office for Civil Protection FOCP SPIEZ LABORATORY

12.10.2016 Science for Diplomats

Background Samples



V

V

Background

Overview: from the facts to the analysis

FACTS

MISSION

ANALYSIS

SAMPLES

RESULTS

DG's request, 02.11.2015: Storage & Stability?

DG's request, 02.11.2015: Storage & Stability?

DIRECTOR-GENERAL'S REQUEST TO THE SCIENTIFIC ADVISORY BOARD TO PROVIDE ADVICE ON LONG-TERM STORAGE AND STABILITY OF SAMPLES COLLECTED IN RELATION TO POTENTIAL USE OF CHEMICAL WEAPONS

- In order to be fully prepared to analyse any chemical potentially present in a wide range
 of types of samples in support of various operational missions, the OPCW must be able
 to store samples over several years and analyse those samples with high accuracy at any
 point in time.
- In the context of the OPCW's investigations and fact-finding missions the Technical Secretariat has since 2013 received samples in relation to potential use of chemical weapons. These samples are stored at the OPCW Laboratory at room temperature or refrigerated at 4°C.
- Sample types (whether current or future) containing chemicals of interest, such as various nerve and blister agents as well as their immediate precursors and degradation products – may include in particular:
 - (a) Relatively pure samples;
 - (b) Liquid (including extracts) and solid samples containing either relatively high levels or trace levels of the chemicals of interest;
 - (c) Highly heterogeneous unprocessed samples such as soil, metal fragments, paint chips, fragments of highly absorbent material, or wipes – containing either relatively high levels or trace levels of the chemicals of interest; and
 - (d) Biomedical samples: blood, plasma, urine, tissue.
- The Director-General requests the Scientific Advisory Board (SAB) to address the following questions:
 - (a) Given the current storage conditions (set out in paragraph 2), how quickly and through what process could the types of samples mentioned in paragraph 3 degrade to a point where analysis of the samples would likely no longer return credible results?
 - (b) What are the best-practice conditions for long-term storage of the types of sample mentioned in paragraph 3?
 - (c) Given the best-practice storage conditions set out in the SAB's answer to question (b), how quickly and through what process could the types of sample mentioned in paragraph 3 degrade to a point where analysis of the samples would likely no longer return credible results?

DG's request, 02.11.2015: Storage & Stability?

DIRECTOR-GENERAL'S REQUEST TO THE SCIENTIFIC ADVISORY BOARD TO PROVIDE ADVICE ON LONG-TERM STORAGE AND STABILITY OF SAMPLES COLLECTED IN RELATION TO POTENTIAL USE OF CHEMICAL WEAPONS

In order to be fully prepared to analyse any chemical potentially present in a wide range of types of samples in support of various operational missions, the OPCW must be able to store samples over several years and analyse those samples with high accuracy at any point in time.

Relatively pure samples

- Liquid (including extracts) and solid samples containing either relatively high levels or trace levels of the chemicals of interest
- Highly heterogeneous unprocessed samples such as soil, metal fragments, paint chips, fragments of highly absorbent material, or wipes – containing either relatively high levels or trace levels of the chemicals of interest
- Biomedical samples: blood, plasma, urine, tissue

degrade to a point where analysis of the samples would likely no longer return credible results?

- (b) What are the best-practice conditions for long-term storage of the types of sample mentioned in paragraph 3?
- (c) Given the best-practice storage conditions set out in the SAB's answer to question (b), how quickly and through what process could the types of sample mentioned in paragraph 3 degrade to a point where analysis of the samples would likely no longer return credible results?

DG's request, 02.11.2015: Storage & Stability?

DIRECTOR-GENERAL'S REQUEST TO THE SCIENTIFIC ADVISORY BOARD TO PROVIDE ADVICE ON LONG-TERM STORAGE AND STABILITY OF SAMPLES COLLECTED IN RELATION TO POTENTIAL USE OF CHEMICAL WEAPONS

In order to be fully prepared to analyse any chemical potentially present in a wide range
of types of samples in support of various operational missions, the OPCW must be able
to store samples over several years and analyse those samples with high accuracy at any
point in time.

- Given the current storage conditions (set out in paragraph 2), how quickly and through what process could the types of sample mentioned in paragraph 3 degrade to a point where analysis of the samples would likely no longer return credible results?
- What are the best-practice conditions for long-term storage of the types of sample mentioned in paragraph 3?
- Given the best-practice storage conditions set out in the SAB's answer to question (b), how quickly and through what process could the types of sample mentioned in paragraph 3 degrade to a point where analysis of the samples would likely no longer return credible results?

(c) Given the best-practice storage conditions set out in the SAB's answer to question (b), how quickly and through what process could the types of sample mentioned in paragraph 3 degrade to a point where analysis of the samples would likely no longer return credible results?

"Credible results"

- OPCW Proficiency Tests
- > ISO 17025
- National Accreditation

"The SAB notes that the analytical findings of the Designated Laboratories (...) will always be scientifically accurate (...), the findings will always return 'credible results'.»

Storage & Stability: what is known?

Rotting

NATURAL PROCESS

V

Storage & Stability: what is known? Influenced by?

Federal Office for Civil Protection FOCP SPIEZ LABORATORY

12.10.2016 Science for Diplomats

Storage & Stability: what is known? Influenced by?

Composition

Temperature

Packaging

Atmosphere

Duration

Light

Moisture

Sugars 7 g

Daily Life

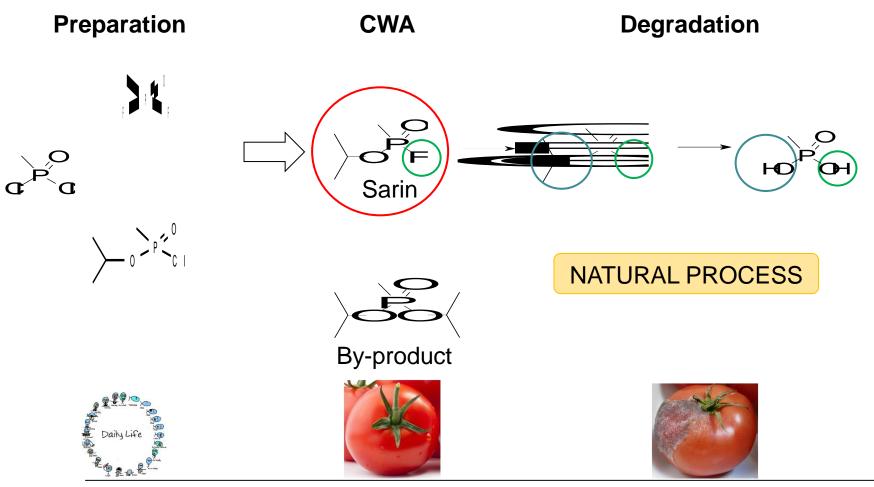
0.348

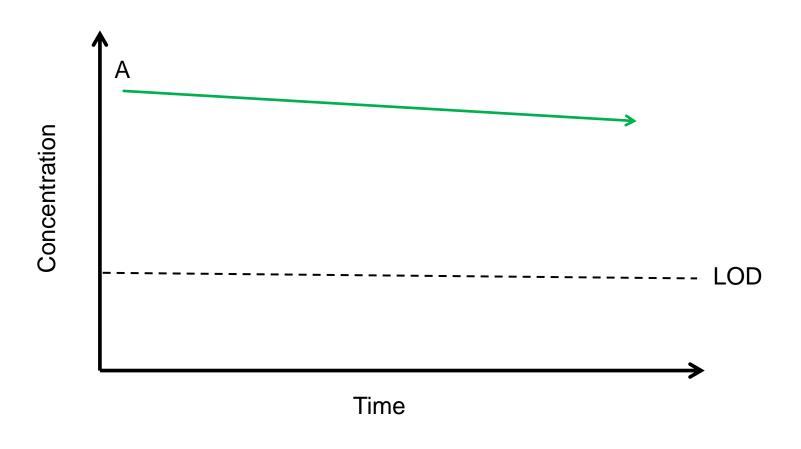
5.67

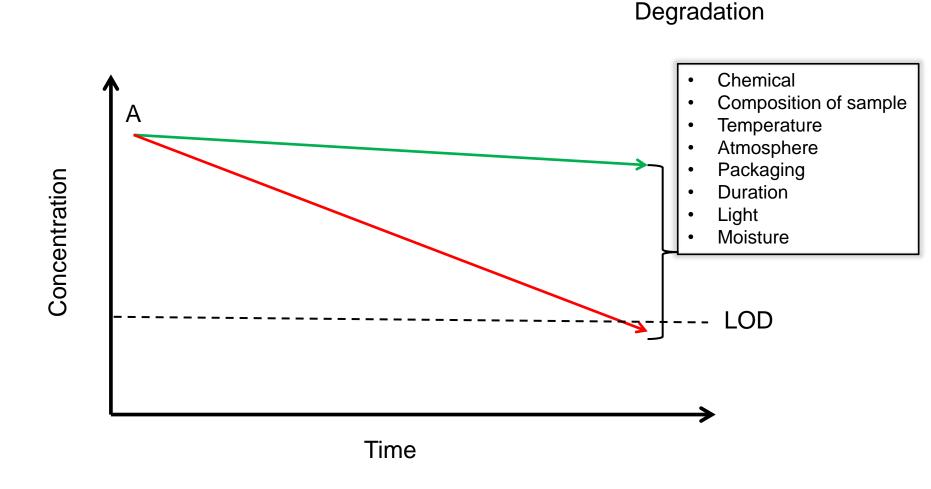
2.57

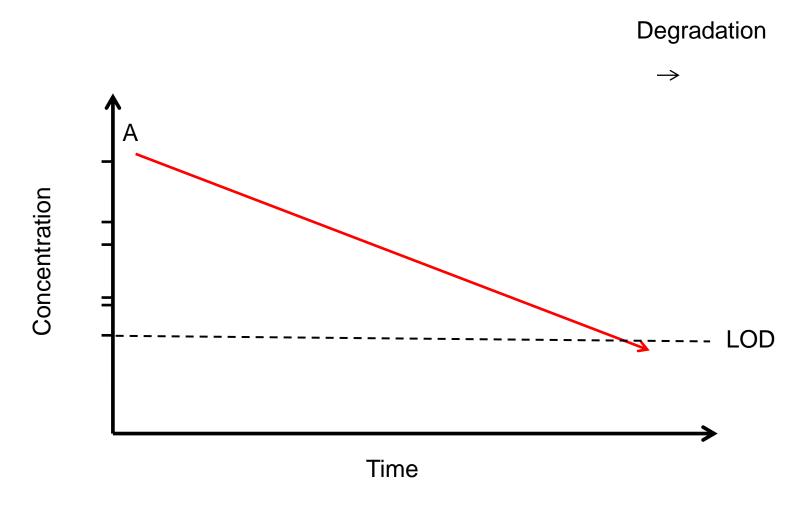
7 MAY

V

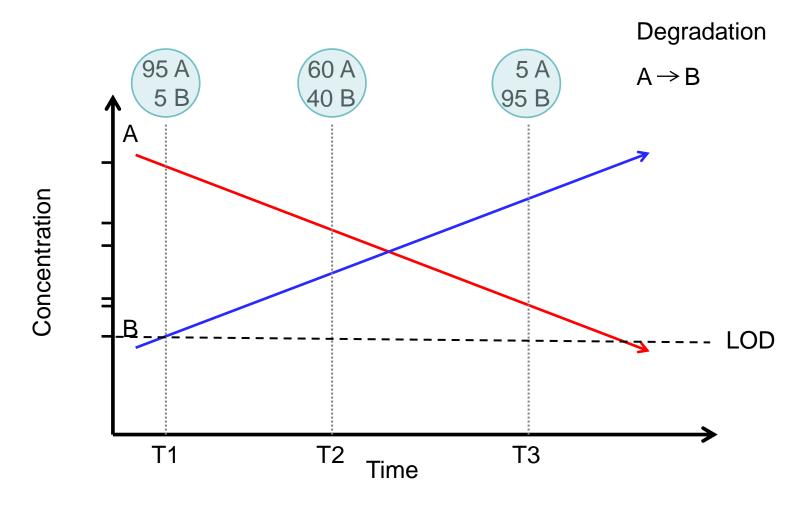

- Chemical
- Composition of sample
- Temperature
- Atmosphere
- Packaging
- Duration
- Light
- Moisture
- . . .

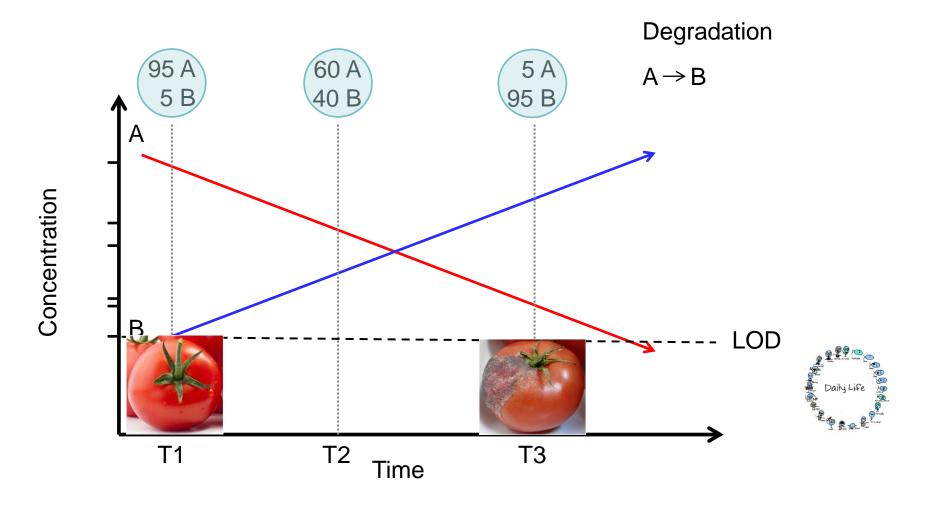










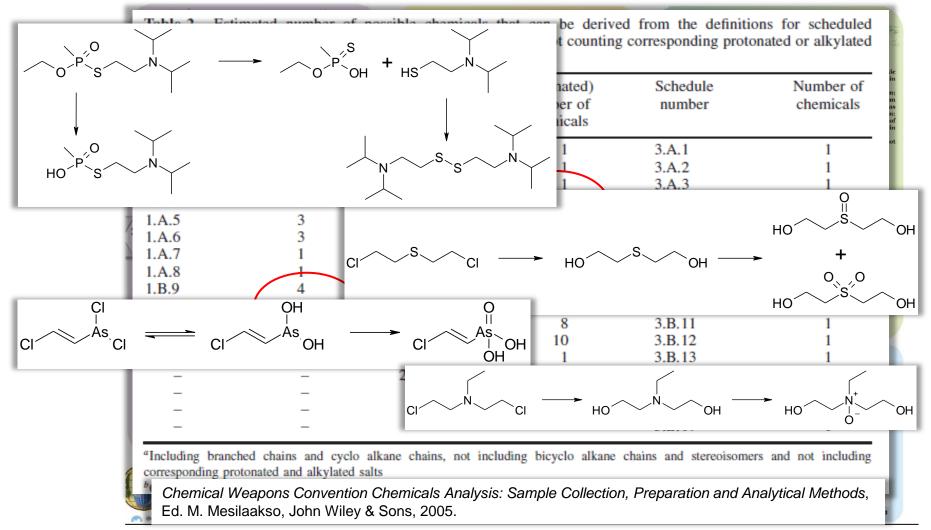


V

Storage & Stability: what is known?
Chemistry

CWC-related chemicals

NATURAL PROCESS


Table 2. Estimated number of possible chemicals that can be derived from the definitions for scheduled chemicals contained in the Annex on Chemicals of the CWC not counting corresponding protonated or alkylated salts, where this is applicable

Schedule number	(Estimated) number of chemicals	Schedule number	(Estimated) number of chemicals	Schedule number	Number of chemicals
1.A.1	>20 000 ^a	2.A.1	1	3.A.1	1
1.A.2	$> 50000^a$	2.A.2	1	3.A.2	1
1.A.3	$> 200000^a$	2.A.3		3.A.3	1
1.A.4	9	2.B.4	Millions	3.A.4	1
1.A.5	3	2.B.5	20^b	3.B.5	1
1.A.6	3	2.B.6	100	3.B.6	1
1.A.7	1	2.B.7	1	3.B.7	1
1.A.8		2.B.8	1	3.B.8	1
1.B.9	4	2.B.9	1	3.B.9	1
1.B.10	$> 200000^a$	2.B.10	10	3.B.10	1
1.B.11	1	2.B.11	8	3.B.11	1
1.B.12		2.B.12	10	3.B.12	1
_	-	2.B.13	1	3.B.13	1
_	_	2.B.14	1	3.B.14	1
_	_	_	_	3.B.15	1
_	_	_	_	3.B.16	1
_	_	_	-	3.B.17	1

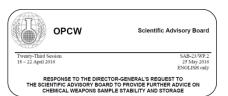
[&]quot;Including branched chains and cyclo alkane chains, not including bicyclo alkane chains and stereoisomers and not including corresponding protonated and alkylated salts

Chemical Weapons Convention Chemicals Analysis: Sample Collection, Preparation and Analytical Methods, Ed. M. Mesilaakso, John Wiley & Sons, 2005.

V

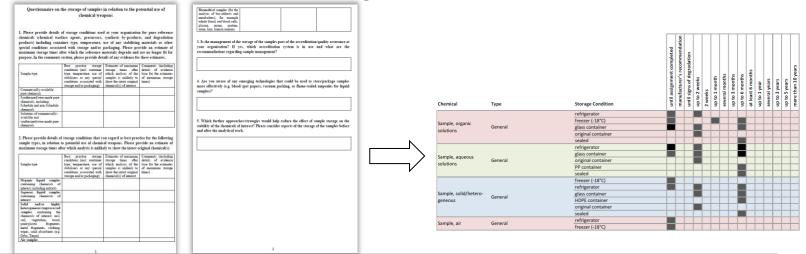
Response to the DG's request

OPCW

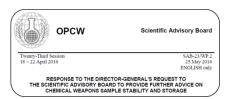

Scientific Advisory Board

Twenty-Third Session 18 – 22 April 2016 SAB-23/WP.2 25 May 2016 ENGLISH only

RESPONSE TO THE DIRECTOR-GENERAL'S REQUEST TO THE SCIENTIFIC ADVISORY BOARD TO PROVIDE FURTHER ADVICE ON CHEMICAL WEAPONS SAMPLE STABILITY AND STORAGE

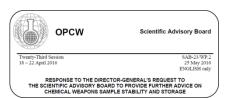

Response to the DG's request

Review of > 180 scientific papers



Questionnaire to Designated Laboratories

Executive Summary


1. Given the current storage conditions in the OPCW Laboratory, how quickly and through what process could the aforementioned types of sample degrade to a point where analysis of the samples would no longer return credible results?

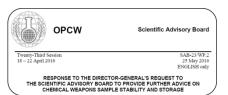
Storage conditions at the OPCW Laboratory

- → RT and 4°C
- Always credible analytical results
- Depends on many factors!
- Hydrolysis, oxidation and polymerisation
- Inevitable and natural (weeks to months!)
- Reduce time between collection and analysis

1. Given the current storage conditions in the OPCW Laboratory, how quickly and through what process could the aforementioned types of sample degrade to a point where analysis of the samples would no longer return credible result.

Recommendation 1. Samples should be analysed as soon after collection possible and the need for storage eliminated or, less favourably, the storage time minimised. Prompt analysis should be viewed as urgent, as the intact original chemicals will provide the strongest basis for confirming the use of chemicals prohibited by the Chemical Weapons Convention. (This is because the sample stability, and potential impacts of any matrix or environmental factors on the stability of any CWC-relevant chemicals in the sample, will not be known prior to analysis.)

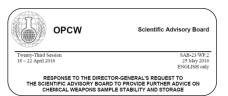
Recommendation 2. Further work on the storage of samples just after sampling and during transport to the OPCW Laboratory, sample handling during splitting, handling and storage of samples at the OPCW Laboratory, should be pursued.



2. What are the best-practice conditions for long term-storage of the different types of sample?

Recommendation 3. Commercial chemical samples should be stored in glocontainers with Teflon-lined caps in the dark: those in

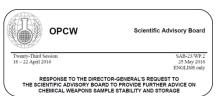
- (i) Schedules 1A01, 1A02, 1A03, 1A06, 1B09, 1B10, 1B11 and 1B12 at -18 °C under argon (to enable stability for 5-10 years).
- (ii) Schedules 1A04 and 1A05 at room temperature (for stability > 10 years).
- (iii) Schedule 1A08 (ricin) as a precipitate in 6 M ammonium sulfate at 4 °C (for stability > 10 years).


2. What are the best-practice conditions for long term-storage of the different types of sample?

Recommendation 3. Commercial chemical samples should be stored in gle containers with Teflon-lined caps in the dark: those in

Recommendation 4. Extracts of chemicals should be made in dichloromethane and stored in glass containers at 4 °C with Teflon-lined caps in the dark, to ensure stability of the intact original chemical for up to one year. (Swabs or wipes should be analysed within one month of collection or otherwise disposed of due to likely storage instability; wherever possible they should be extracted as soon as possible into dichloromethane and the extracts stored instead).

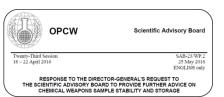
(m) Senequie 17400 (riem) as a precipitate in θ ivi animomium surface at $4 \, ^{\circ}$ C (for stability > 10 years).


2. What are the best-practice conditions for long term-storage of the different types of sample?

Recommendation 3. Commercial chemical samples should be stored in gle containers with Teflon-lined caps in the dark: those in

Recommendation 4. Extracts of chemicals should be made in dichloromethane and stored in glass containers at 4 °C with Teflon-lined caps

Recommendation 5. Highly heterogeneous unprocessed samples – such as soil, metal fragments, paint chips, or fragments of highly absorbent material – containing relatively high levels or trace levels of the chemicals of interest, should be stored in sealed glass or high-density polyethylene containers at -18 °C, to guarantee the stability of the samples for up to 6 months.


2. What are the best-practice conditions for long term-storage of the different types of sample?

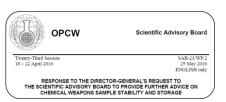
Recommendation 3. Commercial chemical samples should be stored in gle containers with Teflon-lined caps in the dark: those in

Recommendation 4. Extracts of chemicals should be made in dichloromethane and stored in glass containers at 4 °C with Teflon-lined caps

- Recommendation 5. Highly heterogeneous unprocessed samples such as soil, metal fragments, paint chips, or fragments of highly absorbent
- Recommendation 6. Biomedical samples for example, urine or plasma should be stored in polypropylene or polyethylene terephthalate containers in a freezer at -80 °C (except for whole blood which should be refrigerated at 4 °C) to ensure the integrity of the samples for as long as possible (up to several years).

2. What are the best-practice conditions for long term-storage of the different types of sample?

Recommendation 3. Commercial chemical samples should be stored in gle containers with Teflon-lined caps in the dark: those in


Recommendation 4. Extracts of chemicals should be made in dichloromethane and stored in glass containers at 4 °C with Teflon-lined caps

Recommendation 5. Highly heterogeneous unprocessed samples – such as soil, metal fragments, paint chips, or fragments of highly absorbent

Recommendation 6. Biomedical samples – for example, urine or plasma – should be stored in polypropylene or polyethylene terephthalate

Recommendation 7. Larger volumes of chemicals/samples should be split into subsamples and the subsamples used for repeated analytical manipulations. This will reduce the number of warming-cooling cycles the samples have to encounter. This is important especially for materials stored in a freezer or deep freeze (-80 °C). It will also help to minimise degradation of the chemical(s) in the unused portions of samples.

2. What are the best-practice conditions for long term-storage of the different types of sample?

Recommendation 3. Commercial chemical samples should be stored in gle containers with Teflon-lined caps in the dark: those in

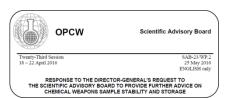
Recommendation 4. Extracts of chemicals should be made in dichloromethane and stored in glass containers at 4 °C with Teflon-lined caps

Recommendation 5. Highly heterogeneous unprocessed samples – such as soil, metal fragments, paint chips, or fragments of highly absorbent

m Recommendation 6. Biomedical samples – for example, urine or plasma – should be stored in polypropylene or polyethylene terephthalate

Recommendation 7. Larger volumes of chemicals/samples should be split into subsamples and the subsamples used for repeated analytical

Recommendation 8. Samples of neat Scheduled chemicals required for long-term banking within the OPCW Laboratory should be flame-sealed in glass ampoules; the use of the flame-sealed ampoule technique appears to offer some storage and shipping advantages for which there is an evidence

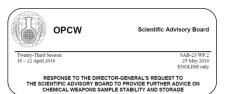

base.

Federal Office for Civil Protection FOCP

SPIEZ LABORATORY

12.10.2016 Science for Diplomats

3. Given these best-practice storage conditions, how quickly and through what type of process could the different types of samples degrade to a point where analysis of the samples would no longer return credible results?


- > Always credible analytical results
- Inevitable and natural (weeks to months!)
- > Extend "life" of original chemical
- > Chemical forensics

Recommendation 9. The Technical Secretariat should monitor advances is sampling and analysis, and with the SAB, any new innovations relevant to chemical forensics.

Recommendation 10. A reference sample collection at the OPCW Laboratory should be kept to provide a range of chemical forensic options for current and future samples suspected of containing CWC-relevant chemicals.⁷

Conclusion

Based on this review of processes by which CWC-relevant chemicals degrade, it is assessed that it is difficult, given the incomplete knowledge worldwide of the fate of CWAs in different matrices, to specify precisely when analysis of a sample 'would likely no longer identify the intact original chemicals'. Analytical results, produced under stringent quality control in OPCW Designated Laboratories, are always 'credible'. The main conundrum is how long after sample collection and storage will key markers of CWA use, or other CWC-prohibited activity, remain detectable? The passage of time will certainly lower the probability of identifying the original intact chemical(s), but the degradation products will remain detectable, proving CWA use.

ORGANISATION FOR THE PROHIBITION OF CHEMICAL WEAPONS

Working Together For a World Free of Chemical Weapons

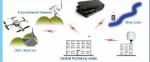
Recommendations From The OPCW Scientific Advisory Board's Report on Verification

Recommendation 1

The Secretariat should consider adopting a comprehensive, more analytical approach to verification utilising all available and verifiable information.

Recommendation 2

The Secretariat should acquire the capability to use open-source information on a routine basis.


Recommendation 3

The Secretariat should put in place an information management structure that can provide the support required for the verification process.

Recommendation 4

Remote/automated monitoring technologies should be added to the list of approved inspecti on equipment.

Recommendation 5

The Secretariat should look into the option of using satellite imagery for the planning of non-routine missions, in particular for IAU and CI.

Recommendation 6

The Secretariat should visit the National Authorities to obtain assurance on the accuracy and completeness of declarations. The outcome of such visits may impact on the inspection frequency.

Recommendation 7

The Secretariat must commission an independent review of all activities pertaining to the missions carried out in the Syrian Arab Republic.

Recommendation 8

The list of declarable OCPFs submitted by States Parties should include all facilities which fall under the definition/requirement of paragraph 1 of Part IX of the Verification Annex, regardless of the purity level of a DOC or DOC mixtures produced.

Recommendation 9

Not all facilities that fall under Part IX of the Verification Annex should be considered of the same relevance to the object and purpose of the Convention. The TWG recommends a practical approach for enhancing the utilisation of verification resources for OCPF declaration and on-site inspection processes.

Recommendation 10

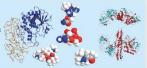
The verification thresholds for OCPFs producing highly relevant chemicals, and the possibility of revision of the product group codes, should be addressed by the SAB as well as the industry cluster.

Recommendation 11

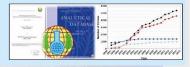
The OPCW should increase the staff of the OPCW Laboratory to cope with various aspects of IAU, biomedical samples, trace environmental analysis, toxins, and on-site analysis. Establishing a network of DLs for biomedical sample analysis should be a high priority.

Recommendation 12

Lessons on chemical sampling and analysis from the OPCW's support to the 2013 United Nations Mission to Investigate the Use of Chemical Weapons in the Syrian Arab Republic, and all subsequent OPCW activities in relation to the Syrian Arab Republic must be identified and implemented.


Recommendation 13

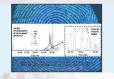
PTs should incorporate a broader range of chemicals, and at a wider range of concentrations, to prepare laboratories for IAU-type scenarios.


Recommendation 14

The Secretariat should expedite toxin identification exercises.

Recommendation 15

Continuous additions to the OPCW Central Analytical Database (OCAD) are recommended to allow the OPCW to meet all its mandated inspection aims, including IAU.


Recommendation 16

Developments in analytical instrument portability, miniaturisation and disposable biosensors should be periodically reviewed by the Secretariat and the SAB for potential applicability to on-site analysis.

Recommendation 17

The Secretariat should monitor developments in attribution analysis/chemical forensics.

Recommendation 18

The Secretariat should augment its capability to monitor and forecast developments in science and technology of relevance to the Convention and its verification regime.

https://www.opcw.org/s

ORGANISATION FOR THE PROHIBITION OF CHEMICAL WEAPONS

Working Together For a World Free of Chemical Weapons

Recommendations From The OPCW Scientific Advisory Board's Report on Verification

Recommendation 1

The Secretariat should consider adopting a comprehensive, more analytical approach to verification utilising all available and verifiable information.

Recommendation 2

The Secretariat should acquire the capability to use open-source information on a routine basis.

Recommendation 3

The Secretariat should put in place an information management structure that can provide the support required for the verification process.

Recommenda

Remote/automated should be added to on equipment.

Recommenda

The Secretariat in review of all act carried out in the S

Recommendation 11

The OPCW should increase the staff of the OPCW Laboratory to cope with various aspects of IAU, biomedical samples, trace environmental analysis, toxins, and on-site analysis. Establishing a network of DLs for biomedical sample analysis should be a high priority.

Recommendat

The verification three evant chemicals, and uct group codes, sho the industry cluster.

Recommenda

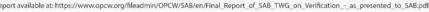
PTs should incorpor and at a wider ran laboratories for IAU

Recommendat

Developments in ar miniaturisation and periodically reviewed for potential applica

Recommendation 13

PTs should incorporate a broader range of chemicals, and at a wider range of concentrations, to prepare laboratories for IAU-type scenarios.



SAB Report on Sample Stability and Storage

- A comprehensive review of scientific literature combined with best practices on storing samples relevant to chemical agents.
- Provides reference information on breakdown products of chemical warfare agents.
- No other compilation of this kind is known to be available in scientific literature.
- The Director-General has encouraged the SAB to publish the review in an appropriate scientific journal (See EC-82/DG.13).
- A resource for those whose work involves sampling and analysis of chemical agents