

OPCW

Organisation for the Prohibition of Chemical Weapons

Chemical Action on Life Processes

An exploration of the systems biology of toxic chemicals and a hands on DNA experience

Science for Diplomats at EC-92 The Hague, 8 October 2019

Dr Christophe Curty, 2019 Scientific Advisory Board Vice-Chair/2020 Chair Ms Andrea Dymytrova, Special Guest Dr Jonathan E. Forman, Science Policy Adviser/Secretary to the SAB Mr Bernhardt Fourie, Office of Confidentiality and Security Ms Giovanna Pontes, Office of Strategy and Policy Ms Julieta Schneider, Office of Strategy and Policy Mr Cheng Tang, 2019 Scientific Advisory Board Chair

How Do Atoms and Molecules Connect to our Priorities?

http://cms.gavirtualschool.org/Shared/Science/Biology17/WelcomeToBiology/Biology_WelcomeToBiology_Shared4.html

OPCW

Toxicology

"The study of the adverse effects of chemicals on living organisms"

Basic assumption of toxicology

"The dose makes the poison" (Latin: sola dosis facit venenum)

"Alle Ding' sind Gift und nichts ist ohn' Gift; allein die Dosis macht, dass ein Ding kein Gift ist."

All things are poison, and nothing is without poison, the dosage alone makes it so a thing is not a poison.

Paracelsus (1493-1541)

Individual Response to Exposure

Individual sensitivity

Routes of Exposure

Duration of exposure

Routes of Exposure and Physical State of Chemical Agent

Routes of Exposure

Acute Single short-term exposure

Chronic

Repeated or continuous exposure

How much of a chemical is required to cause death?

Testing for Toxicity

Dosage Units

Median Lethal Dose (LD₅₀)

Median Lethal Concentration as a function of time (LCt₅₀)

The "concentration of a chemical (in vapor phase) expected to be lethal to 50% of the members of an exposed population for a specified period of time." $[mg \cdot min/m^3]$

Dosage Units

Example: Dichlorovos

Insecticide commonly used in household pesticide strips

Oral LD₅₀ (rat): 56 mg/kg
Dermal LD₅₀ (rat): 75 mg/kg
Intraperitoneal LD₅₀ (rat): 15 mg/kg
Inhalation LC₅₀ (rat): 1.7 ppm (15 mg/m3); 4-hour exposure
Oral LD₅₀ (rabbit) 10 mg/kg
Oral LD₅₀ (pigeon:): 23.7 mg/kg

Toxicity classes

Toxicity Classes: Hodge and Sterner Scale					
		Routes of Administration			
		Oral LD ₅₀	Inhalation LC_{50}	Dermal LD ₅₀	
Toxicity Rating	Commonly Used Term	(single dose to rats) [mg/kg]	(exposure of rats for 4 hours) [ppm]	(single application to skin of rabbits) [mg/kg]	Probable Lethal Dose for Man
1	Extremely Toxic	1 or less	10 or less	5 or less	1 grain (a taste, a drop)
2	Highly Toxic	1-50	10-100	5-43	4 ml (1 tsp)
3	Moderately Toxic	50-500	100-1000	44-340	30 ml (1 fl. oz.)
4	Slightly Toxic	500-5000	1000-10,000	350-2810	600 ml (1 pint)
5	Practically Non-toxic	5000-15,000	10,000-100,000	2820-22,590	1 litre (or 1 quart)
6	Relatively Harmless	15,000 or more	100,000	22,600 or more	1 litre (or 1 quart)

For what?

- Emergency procedures
- Safety clothing and equipment guidelines
- Transportation regulations
- Occupational exposure limits

Environmental Toxicology: <u>https://www.slideshare.net/misteraugie/hlth104chapter03</u> What is a LD₅₀ and LC₅₀? <u>https://www.ccohs.ca/oshanswers/chemicals/ld50.html</u>

Any chemical which through its *chemical action on life processes* can cause death, temporary incapacitation or permanent harm to humans or animals. This includes all such chemicals, regardless of their origin or of their method of production, and regardless of whether they are produced in facilities, in munitions or elsewhere

- Chemical Weapons Convention Article II, Paragraph 2

https://www.cellsignal.com/contents/science-cellular-landscapes/cellular-landscapes-vesicle-trafficking/science-landscapes-vesicle-trafficking#

This is NOT a UN Org Chart!

This is NOT a UN Org Chart!

Part 1 Metabolic Pathways Roche Blochemical Pathwaye 4e Edition, Part 1 - Editor: Gerhard Michael	Roche		Bit Bit 3 Status Status 3 Status Status Status 4 Status Status Status Status 5 Status Statu		Nucleotide Purines	Metabolism		Nucleotide Metabolism NAD, NADP	Antibiotics Penicillin, Cephalosporin
Carbohydrate Metabolism Acidic Carbohydrate Derivatives		Amino Acid Me	tabolism						
Carbo- hydrate Meta- bolism Inositol	Histidine Carbohydrate Metabolism Amino Sugar Derivatives				Amino Acid Metabolism Lysine Amino Acid Metabolism			Bacterial Meta- bolism Penicillin, -Cephalos- porin	
Carbohydrate Metabolism Di- and Polysaccharides					Serine, Threenine, Cysteine, Methionine				
Carbohydrate Giycolysis and Gi	s Metabolism uconeogenesis	Bacterial Metabolism Methane Oxidation	Carbohydra Metabolism Pyruvate Turne	nte nover	Citrate and Citrate And Cycle	Porphyrins,	ole Metabolism Cobalamin	Tetrapym Heme, Cyto	role Metabolism protection of the second sec
C1-Metabolism Glyco- and Phospholipids		Is Fatty Acids			Amino Acid Metabolism Jrea Cycle	Amino Acid Metabolism Glutamate, Proline, Hydroxyproline		Nucleotide Metabolism Pyrimidines	
Bacterial Metabolism Methanogenensis	Lipid Metabolism Sphingolipids	Bacterial Metabolic Alkane Oxidation	sm ()						
Amino Acid Metabolism Leucine, Isoleucine, Valine		Lipid Metabolism Carotenoids and Isoprenoids		Steroid Metabolism Phytosteroles	Steroid Metabolism Mineralocorticoids and Glucocorticoids Steroid Metabo Androgens and Est			abolism I Estrogens	
Cofactors and Vitam	nes			Stero	id Metabolism				and Roberts Hereiters "Allering"

Coenzyme A

This is NOT a UN Org Chart!

Just Like Chemistry, Molecular Biology is also About Molecules...

The molecules are just very large...

Similar size to a number of classical chemical warfare agents

Proteins and DNA can be ~10 – 100 times larger

THE CHEMICAL STRUCTURE OF DNA

WHAT HOLDS DNA STRANDS TOGETHER?

DNA strands are held together by hydrogen bonds between bases on adjacent strands. Adenine (A) always pairs with thymine (T), while guanine (C) always pairs with cytosine (C). Adenine pairs with uracil (U) in RNA.

FROM DNA TO PROTEINS

The bases on a single strand of DNA act as a code. The letters form three letter codons, which code for amino acids - the building blocks of proteins.

An enzyme, RNA polymerase, transcribes DNA into mRNA (messenger ribonucleic acid), it splits apart the two strands that form the double helix, then reads a strand and copies the sequence of nucleotides. The only difference between the RNA and the original RNA is a number press of thereine (T), another base sector a similar structure is used uracit (U).

In multicellular organisms, the mRNA carries genetic code out of the cell nucleus, to the cytoplasm. Here, protein synthesis takes place. 'Translation' is the process of turning the mRNA's 'code' into proteins. Molecules called ribosomes carry out this process, building up proteins from the amino acids coded for.

© Andy Brunning/Compound Interest 2018 - www.compoundchem.com | Twitter: @compoundchem | FB: www.facebook.com/compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

A GUIDE TO THE TWENTY COMMON AMINO ACIDS

AMINO ACIDS ARE THE BUILDING BLOCKS OF PROTEINS IN LIVING ORGANISMS. THERE ARE OVER 500 AMINO ACIDS FOUND IN NATURE - HOWEVER, THE HUMAN GENETIC CODE ONLY DIRECTLY ENCODES 20. 'ESSENTIAL' AMINO ACIDS MUST BE OBTAINED FROM THE DIET, WHILST NON-ESSENTIAL AMINO ACIDS CAN BE SYNTHESISED IN THE BODY.

Note: This chart only shows those amino acids for which the human genetic code directly codes for. Selenocysteine is often referred to as the 21st amino acid, but is encoded in a special manner. In some cases, distinguishing between asparagine/aspartic acid and glutamine/glutamic acid is difficult. In these cases, the codes asx (B) and glx (Z) are respectively used.

© COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

Proteins are Sequences of Connected Amino Acids

Proteins are Sequences of Connected Amino Acids

Proteins are Sequences of Connected Amino Acids

To Help Understand This, We Built a Model...

Living Systems Enjoy Broad Molecular Diversity

Living Systems Enjoy Broad Molecular Diversity

Biological systems are very complicated... (a system of simultaneous and interacting processes)

Toxic chemicals can interfere with a multitude of life processes, and these can impact other life processes through interference in a "different" part of the "system"

OPCW

Why are Some Chemicals are "More Toxic" Than Others

Chemical Action on Life Processes: Some Examples

Chemical Action on Life Processes: Some Examples

Chemical Action on Life Processes: Some Examples

Bringing Oxygen to the Brain

Bringing Oxygen to the Brain

Hemoglobin MW = 64,000 Toxic chemicals, ~ 2,000 times smaller than the hemoglobin transporter protein, shut down a vital life process

Molecule to Molecule Interactions

Molecule to Molecule Interactions

Enzyme Inhibition: "Turning off a Life Process"

In Addition to Size and Shape – Chemical Functional Groups Still Matter

From PDB Molecule of the Month, 2004 https://pdb101.rcsb.org/motm/54

Acetylcholinesterase Inhibition

created by Sofía Sola Sancho and Maria Hemme

Acetylcholinesterase

Acetylcholine (ACh

The primary toxicity of organophosphorus nerve agents results from the inhibition of the enzyme Acetylcholinesterase (AChE).

AChE is responsible for breaking down the neurotransmitter acetylcholine (ACh). This switches a nerve signal from on to off. If the enzyme is inhibited, ACh accumulates in the synapse and the signal continues to transmit.

Figure 1: Life Cycle of ACh.

Sten 1

Step 2

Step 3

Tre

(D) /opcw

Figure 5: printed 3D

Figure 6: printed 3D Model of the AChE surface

Nerve Agent Molecular Shape and Size

Cyclo-Sarin LD_{so} = 0.018 mg/kg (i.v. rabbit)* LD_{so} = 0.012 mg/kg (i.v. rabbit)*

Toxicity of an organophosphorus nerve agent depends on the ability to access the AChE binding site. Size, shape and hydrophobicity of the nerve agent exerts an effect. As alkyl substituents increase in size and degrees of freedom, toxicity decreases.

The spatial orientation (shape) of the molecule also matters, as illustrated by toxicity differences across the four stereoisomers of Soman.

* – Black, R. M., & Harrison, I. M. (2009). The Chemistry of Organophosphorus Chemical Warfare Agents. PATATS Chemistry of Functional Groups. doi:10.1002/9780470682531.pat0070

Effects and Symptoms

/opcwonline /opcwonline in /company/opcw

Inhibition of AChE in muscarinic synapses (neuromuscular system) induces cholinergic crisis. Nicotinic synapses (central nervous system, e.g. brain) are also effected.

Symptoms include sweating, salivation, miosis (pinpoint pupils), paralysis, respiratory failure, seizures and eventually death.

OPCW @opcw st

Figure 4: Inhibition of AChE by Sarin and Treatment with Atropine and 2-PAM.

Normal Nerve Function

AChE = acetylcholinesterase

When Nerve Agent Inhibits Acetylcholinesterase

Acetylcholinesterase Inhibition: Nerve Agent Size, Shape and Orientation

Acetylcholinesterase Inhibition: Nerve Agent Size, Shape and Orientation

Acetylcholinesterase Inhibition: Nerve Agent Size, Shape and Orientation

Acetylcholinesterase is also Found in the Brain...

AChE inhibitors are used in the treatment of Alzheimer's Disease! (but not Scheduled "nerve agents")

Acetylcholinesterase is also Found in the Brain...

Interference with life processes in the brain nerve agent exposure can lead to long-term postexposure neurological conditions

Modulating Pain Response

Modulating Pain Response

Modulating Pain Response

OPCW

Central Nervous System (CNS)-Acting Chemicals OPCW

2A.03%

Postsynaptic

cell

Mechanism of action of BZ.

populations and/or expe

Bufertani

Riot Control Agents

Fauzia Nurul Izzati, Jonathan E. Forman and Christopher M. Timperley

How do Riot Control Agents work?

RCAs produce irritation through binding to TRP (Transient Receptor Potential) receptors. This activates some

of the same biochemical pathways that are triggered by eating horseradish or hot peppers.

What is the definition of a Riot Control Agent (RCA)?

From paragraph 7, Article II of the Chemical Weapons Convention:

"Any chemical not listed in a Schedule, which can produce rapidly in humans sensory irritation or disabling physical effects which disappear within a short time following termination of exposure."

50.0MB

Riot Control Agents

Fauzia Nurul Izzati, Jonathan E. Forman and Christopher M. Timperley

How do Riot Control Agents work?

RCAs produce irritation through binding to TRP (Transient Receptor Potential) receptors. This activates some

of the same biochemical pathways that are triggered by eating horseradish or hot peppers.

What is the definition of a Riot Control Agent (RCA)?

From paragraph 7, Article II of the Chemical Weapons Convention:

"Any chemical not listed in a Schedule, which can produce rapidly in humans sensory irritation or disabling physical effects which disappear within a short time following termination of exposure."

The 17 RCA's activate peripheral nervous system ion channel receptors (TRPA1, TRPV1) - these initiate an irritation response

Capsaicin, homocapsaicin and other related compounds bing to the TRPV1 receptor. These chemicals are naturally

found in hot chili , eppers.

Proteins as Toxic Chemicals...

Proteins as Toxic Chemicals...

Molecular Machinery...

Shuts down protein synthesis. Impacts on life processes throughout the cell.

Ricin B chain can be removed from the A chain and used to deliver other "chemicals" into a cell

Why its Important to Fully Understand Life Processes

Part 1 Metabolic Pathways Roche Blochamical Pathways 4m Edition, Part 1 - Editor: Gerhard Michal	Roche			Nucleotide N Purines	Aetabolism		Nucleotide Metabolism NAD, NADP	Antibiotics Penicillin, Cephalosporin
Carbohydrate Metabolis Acidic Carbohydrate Derivativ	SM Ves							
Carbo- hydrate Meta- bolism Inositol Carbohydrate Metabolism Di- and Polysaccharides		Amino Acid Metabolism Histidine te Carbohydrate Metabolism Amino Sugar Derivatives			Amino Acid Metabolism Lysine Amino Acid Metabolism Serine, Threonine, Cysteine, Methionine			Bacterial Meta- bolism Penicillin, -Cephalos- porin Bacterial Metabolism Butanol/
Carboh Metabo Nucleotid Carboh Glycolysi	ydrate blism le Sugars ydrate Metabolism s and Gluconeogenesis	Bacterial Metabolism Methane Oxidation Pyruvate Tr	drate ism urnover	ate and oxalate Cycle	Tetrapyrrol I Porphyrins, C	le Metabolism obalamin	Tetrapyr	Butyrate, Fermentation
C1-Metabolism Bacterial Metabolism	Lipid Metabolism Glyco- and Phospholipid	Is Lipid Metabolism Fatty Acids	Am Me Urea	ino Acid tabolism a Cycle	Amino Acid Metab Glutamate, Proline, Hyd	polism droxyproline	Nucleotide Metabol Pyrimidines	
Methanogenensis	Lipid Metabolism Sphingolipids	Bacterial Metabolism Alkane Oxidation						
Amino Acid Metabolism Leucine, Isoleucine, Valine		Lipid Metabolism Carotenoids and Isoprenoids	Steroid Metabolism Phytosteroles	Steroid Metabolism Mineralocorticoids and Glucocorticoids Steroid Metal Androgens and E			etabolism nd Estrogens	
Cofactors and	Vitamines		Cholester	ol Synthesis				

Why its Important to Fully Understand Life Processes

Practical Guide for Medical Management of Chemical Warfare Casualties

A more specific effect on a unique life process allows more targeted/effective medical countermeasures to be developed

Chemical Action Does Not Always Need to be So Complicated..

An alkyl halide will transfer an "alkyl" (R) group to another molecule through reaction with a "nucleophilic" functional group

Chemical Action Does Not Always need to be So Complicated..

A GUIDE TO THE TWENTY COMMON AMINO ACIDS

AMINO ACIDS ARE THE BUILDING BLOCKS OF PROTEINS IN LIVING ORGANISMS. THERE ARE OVER 500 AMINO ACIDS FOUND IN NATURE - HOWEVER, THE HUMAN GENETIC CODE ONLY DIRECTLY ENCODES 20. 'ESSENTIAL' AMINO ACIDS MUST BE OBTAINED FROM THE DIET, WHILST NON-ESSENTIAL AMINO ACIDS CAN BE SYNTHESISED IN THE BODY.

Note: This chart only shows those amino acids for which the human genetic code directly codes for. Selenocysteine is often referred to as the 21st amino acid, but is encoded in a special manner. In some cases, distinguishing between asparagine/aspartic acid and glutamine/glutamic acid is difficult. In these cases, the codes asx (B) and glx (Z) are respectively used.

© COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

THE CHEMICAL STRUCTURE OF DNA

© Andy Brunning/Compound Interest 2018 - www.compoundchem.com | Twitter: @compoundchem | FB: www.facebook.com/compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

THE CHEMICAL STRUCTURE OF DNA

This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

ଢ଼ୢୖଢ଼ୢଞ୍ଚ

DNA: The "Instructions"

 $\overline{\mathsf{DPC}}W$

If the DNA strands cannot separate, there are "reading errors"

- can generate impact on downstream life processes
- can lead to cell death and/or long-term health effects of exposure

DNA: The "Instructions"

What Did We Learn Today?

- The scientific basis of the Chemical Weapons Convention is "biology"
- The scientific basis of "biology" is "chemistry"
 - functional groups of connected atoms (molecular structures) matter!
- Biological systems are made up of interacting components and chemical signals are an integral part of these processes
 - Different classes of chemicals impact life processes through different mechanisms – understanding these mechanisms provides a basis for effective medical response
- Models and analogies of how it all works are useful for understanding
 - However, the molecules of life are not rigid plastic parts!
- Science is fun!

What Did We Learn Today?

The purpose of the Chemical Weapons Convention is NOT to define scientific disciplines!

The purpose is to ban chemical weapons

The Convention draws upon a sound (and transdisciplinary) scientific basis to set out its definitions

OPCW

منظمة حظر الأسلحة الكيميائية

禁止化学武器组织

Organisation for the Prohibition of Chemical Weapons Organisation pour l'Interdiction des Armes Chimiques Организация по запрещению химического оружия Organización para la Prohibición de las Armas Químicas